Optimal guaranteed control of delay systems
Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 27-46 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A linear problem of optimal guaranteed control of a delay system is considered in which geometric constraints on control actions and terminal constraints on states are present. A new concept of a state of the problem that represents a finite-dimensional vector is introduced. Three kinds of optimal feedback are defined. We describe methods for implementing open-loop and closable optimal feedbacks. They are based on a fast dual method for the correction of optimal programs. The results are illustrated by examples.
@article{TIMM_2006_12_2_a2,
     author = {R. Gabasov and N. M. Dmitruk and F. M. Kirillova},
     title = {Optimal guaranteed control of delay systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {27--46},
     year = {2006},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a2/}
}
TY  - JOUR
AU  - R. Gabasov
AU  - N. M. Dmitruk
AU  - F. M. Kirillova
TI  - Optimal guaranteed control of delay systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 27
EP  - 46
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a2/
LA  - ru
ID  - TIMM_2006_12_2_a2
ER  - 
%0 Journal Article
%A R. Gabasov
%A N. M. Dmitruk
%A F. M. Kirillova
%T Optimal guaranteed control of delay systems
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 27-46
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a2/
%G ru
%F TIMM_2006_12_2_a2
R. Gabasov; N. M. Dmitruk; F. M. Kirillova. Optimal guaranteed control of delay systems. Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 27-46. http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a2/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1969

[2] Bellman R., Dinamicheskoe programmirovanie, IL, M., 1960 | MR

[3] Gabasov R., Kirillova F. M., “Printsipy optimalnogo upravleniya”, Dokl. NAN Belarusi, 48:1 (2004), 15–18 | MR

[4] Gabasov R., Kirillova F. M., “Fast algorithms for positional optimization of dynamic systems”, Proc. of the Workshop “Fast solutions of discretized optimization problems”, eds. K.-H. Hoffmann, R. Hoppe and V. Schulz, 2001, 107–119 | MR | Zbl

[5] Balashevich N. V., Gabasov R., Kirillova F. M., “Chislennye metody programmnoi i pozitsionnoi optimizatsii lineinykh sistem upravleniya”, Zhurn. vychisl. matematiki i mat. fiziki, 40:6 (2000), 838–859 | MR | Zbl

[6] Gabasov R., Kirillova F. M., Balashevich N. V., “On the Synthesis Problem for Optimal Control Systems”, SIAM J. Control Optim., 39:4 (2000), 1008–1042 | DOI | MR | Zbl

[7] Balashevich N. V., Gabasov R., Kalinin A. I., Kirillova F. M., “Optimalnoe upravlenie nelineinymi sistemami”, Zhurn. vychisl. matematiki i mat. fiziki, 42:7 (2002), 969–995 | MR | Zbl

[8] Balashevich N. V., Gabasov R., Kirillova F. M., “Vychislenie optimalnykh programmy i upravleniya v lineinoi zadache s fazovym ogranicheniem”, Zhurn. vychisl. matematiki i mat. fiziki, 45:12 (2005), 2112–2130 | MR | Zbl

[9] Gabasov R., Dmitruk N. M., Kirillova F. M., “Optimalnoe upravlenie mnogomernymi sistemami po netochnym izmereniyam ikh vykhodnykh signalov”, Tr. In-ta matematiki i mekhaniki, 10, no. 2, UrO RAN, Ekaterinburg, 2004, 35–57 | MR | Zbl

[10] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR | Zbl

[11] Gabasov R., Kirillova F. M., Tyatyushkin A. I., Konstruktivnye metody optimizatsii. Ch. 1. Lineinye zadachi, Universitetskoe, Mn., 1984 | MR

[12] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR

[13] Kim A. V., Rubleva S. S., Choi E. S., “K zadache analiticheskogo konstruirovaniya regulyatorov dlya sistem s posledeistviem”, Tr. In-ta matematiki i mekhaniki, 11, no. 1, UrO RAN, Ekaterinburg, 2005, 111–121

[14] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985 | MR

[15] Balashevich N. V., Gabasov R., Kirillova F. M., “Postroenie optimalnykh obratnykh svyazei po matematicheskim modelyam s neopredelennostyu”, Zhurn. vychisl. matematiki i mat. fiziki., 44:2 (2004), 265–286 | MR | Zbl

[16] Gabasov R., Kirillova F. M., “Optimalnye obratnye svyazi po sostoyaniyu: sintez i realizatsiya”, Dokl. NAN Belarusi, 49:4 (2005), 31–37 | MR | Zbl

[17] Krasovskii N. N., Osipov Yu. S., “O stabilizatsii dvizhenii upravlyaemogo ob'ekta s zapazdyvaniem v sisteme regulirovaniya”, Izv. AN SSSR. Tekhn. kibernetika, 1963, no. 6, 3–15 | MR | Zbl

[18] Balashevich N. V., Gabasov R., Kirillova F. M., “Optimalnoe upravlenie lineinymi sistemami s zapazdyvaniem”, Dokl. RAN, 410:2 (2006), 173–178 | MR | Zbl