Optimal guaranteed control of delay systems
Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 27-46
Voir la notice de l'article provenant de la source Math-Net.Ru
A linear problem of optimal guaranteed control of a delay system is considered in which geometric constraints on control actions and terminal constraints on states are present. A new concept of a state of the problem that represents a finite-dimensional vector is introduced. Three kinds of optimal feedback are defined. We describe methods for implementing open-loop and closable optimal feedbacks. They are based on a fast dual method for the correction of optimal programs. The results are illustrated by examples.
@article{TIMM_2006_12_2_a2,
author = {R. Gabasov and N. M. Dmitruk and F. M. Kirillova},
title = {Optimal guaranteed control of delay systems},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {27--46},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a2/}
}
TY - JOUR AU - R. Gabasov AU - N. M. Dmitruk AU - F. M. Kirillova TI - Optimal guaranteed control of delay systems JO - Trudy Instituta matematiki i mehaniki PY - 2006 SP - 27 EP - 46 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a2/ LA - ru ID - TIMM_2006_12_2_a2 ER -
R. Gabasov; N. M. Dmitruk; F. M. Kirillova. Optimal guaranteed control of delay systems. Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 27-46. http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a2/