Regularized traces of discrete operators
Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 162-177 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Unbounded perturbations of discrete operators are considered. Formulas for regularized traces are obtained, in which a finite number of corrections of the perturbation theory are used. An exact relation is established between the degree of subordination of a perturbation to the unperturbed operator and the number of corrections necessary for the existence of a finite formula of the trace. New estimates for the kernel norm of a resolvent of discrete operators are obtained.
@article{TIMM_2006_12_2_a14,
     author = {V. A. Sadovnichii and V. E. Podolskii},
     title = {Regularized traces of discrete operators},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {162--177},
     year = {2006},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a14/}
}
TY  - JOUR
AU  - V. A. Sadovnichii
AU  - V. E. Podolskii
TI  - Regularized traces of discrete operators
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 162
EP  - 177
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a14/
LA  - ru
ID  - TIMM_2006_12_2_a14
ER  - 
%0 Journal Article
%A V. A. Sadovnichii
%A V. E. Podolskii
%T Regularized traces of discrete operators
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 162-177
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a14/
%G ru
%F TIMM_2006_12_2_a14
V. A. Sadovnichii; V. E. Podolskii. Regularized traces of discrete operators. Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 162-177. http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a14/

[1] Gelfand I. M., Levitan B. M., “Ob odnom prostom tozhdestve dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, Dokl. AN SSSR, 88 (1953), 593–596 | MR

[2] Sadovnichii V. A., Podolskii V. E., “Regulyarizovannyi sled ogranichennogo vozmuscheniya operatora s yadernoi rezolventoi”, Differents. uravneniya, 34:4 (1999), 556–564 | MR

[3] Sadovnichii V. A., Konyagin S. V., Podolskii V. E., “Regulyarizovannyi sled operatora s yadernoi rezolventoi, vozmuschennogo ogranichennym”, Dokl. RAN, 373:1 (2000), 26–28 | MR

[4] Sadovnichii V. A., Podolskii V. E., “Sledy operatorov s otnositelno yadernym vozmuscheniem”, Dokl. RAN, 378:3 (2001), 324–325 | MR

[5] Sadovnichii V. A., Podolskii V. E., “Sledy operatorov s otnositelno kompaktnym vozmuscheniem”, Mat. sb., 193:2 (2002), 129–152 | MR

[6] Sadovnichii V. A., Dubrovskii V. V., “Ob odnoi abstraktnoi teoreme teorii vozmuschenii, o formulakh regulyarizovannykh sledov i o dzeta-funktsii operatorov”, Differents. uravneniya, 13:7 (1977), 1264–1271 | MR | Zbl

[7] Sadovnichii V. A., Lyubishkin V. A., “Konechnomernye vozmuscheniya diskretnykh operatorov i formuly sledov”, Funkts. analiz i ego pril., 20:3 (1986), 55–65 | MR

[8] Dubrovskii V. V., “Abstraktnye formuly regulyarizovannykh sledov ellipticheskikh gladkikh differentsialnykh operatorov, zadannykh na kompaktnykh mnogoobraziyakh”, Differents. uravneniya, 27:12 (1991), 2164–2166 | MR

[9] Sadovnichii V. A., Dubrovskii V. V., “Klassicheskaya formula regulyarizovannogo sleda dlya sobstvennykh chisel operatora Laplasa–Beltrami s potentsialom na sfere $S^2$”, Dokl. AN SSSR, 319:1 (1991), 61–62 | MR

[10] Podolskii V. E., “Formula regulyarizovannogo sleda operatora Laplasa–Beltrami s nechetnym potentsialom na sfere $S^2$”, Mat. zametki, 56:1 (1994), 71–77 | MR

[11] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR | Zbl

[12] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965, 448 pp. | MR