Estimate of solution stability in a two-dimensional inverse problem for elasticity equations
Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 152-161 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of determining the density of the medium and one of its elasticity moduli is considered. Properties of the elastic medium and external forces are assumed to be independent of the coordinate $x_3$. In this case, the third component of the displacement vector satisfies a scalar equation of the second order, which contains the density $\rho$ of the medium and elasticity modulus $\mu$ as coefficients. The parameters $\rho$ and $\mu$ are known to be positive and constant everywhere outside some compact domain $D\subset\mathbb R^2$, but they are unknown inside $D$. The problem of determining these coefficients in $D$ via information, given on the boundary of the domain $D$ for some finite time interval, about a solution of two direct problems is considered. An estimate of the conditional stability of a solution of the inverse problem under consideration is established.
@article{TIMM_2006_12_2_a13,
     author = {V. G. Romanov},
     title = {Estimate of solution stability in a~two-dimensional inverse problem for elasticity equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {152--161},
     year = {2006},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a13/}
}
TY  - JOUR
AU  - V. G. Romanov
TI  - Estimate of solution stability in a two-dimensional inverse problem for elasticity equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 152
EP  - 161
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a13/
LA  - ru
ID  - TIMM_2006_12_2_a13
ER  - 
%0 Journal Article
%A V. G. Romanov
%T Estimate of solution stability in a two-dimensional inverse problem for elasticity equations
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 152-161
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a13/
%G ru
%F TIMM_2006_12_2_a13
V. G. Romanov. Estimate of solution stability in a two-dimensional inverse problem for elasticity equations. Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 152-161. http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a13/

[1] Blagoveschenskii A. S., “Ob obratnoi zadache teorii rasprostraneniya seismicheskikh voln”, Problemy mat. fiziki, Vyp. 1, LGU, L., 1966, 68–81

[2] Alekseev A. S., “Obratnye dinamicheskie zadachi seismiki”, Nekotorye metody i algoritmy interpretatsii geofizicheskikh dannykh, Nauka, M., 1967, 9–84

[3] Anikonov Yu. E., Moskvitin V. N., “Ob odnoi obratnoi zadache dlya sistemy dinamicheskikh uravnenii teorii uprugosti”, Dokl. AN SSSR, 253:5 (1980), 1086–1087 | MR | Zbl

[4] Romanov V. G., “Obratnaya zadacha Lemba v lineinom priblizhenii”, Chislennye metody v seismicheskikh issledovaniyakh, Nauka, Novosibirsk, 1983, 51–78

[5] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[6] Yakhno V. G., Obratnye zadachi dlya differentsialnykh uravnenii uprugosti, Nauka, Novosibirsk, 1990 | MR | Zbl

[7] Yakhno V. G., “Multidimensional inverse problems in ray formulation for hyperbolic equations”, J. Inv. Ill-Posed Problems, 6:4 (1998), 373–386 | MR | Zbl

[8] Rachele L., “An inverse problem in elastodynamics: determination of the wave speeds in the interior”, J. Diff. Eqs., 162:2 (2000), 300–325 | DOI | MR | Zbl

[9] Rachele L., “Boundary determination for an inverse problem in elastodynamics”, Comm. PDE, 25:11–12 (2000), 1951–1996 | DOI | MR | Zbl

[10] Romanov V. G., “Ob otsenke ustoichivosti resheniya obratnoi zadachi dlya giperbolicheskogo uravneniya”, Sib. mat. zhurn., 39:2 (1998), 436–449 | MR | Zbl

[11] Romanov V. G., Yamamoto M., “Multidimensional inverse hyperbolic problem with impulse input and single boundary measurement”, J. Inv. Ill-Posed Problems, 7:6 (1999), 573–588 | MR | Zbl

[12] Romanov V. G., “Otsenka ustoichivosti v obratnoi zadache opredeleniya skorosti zvuka”, Sib. mat. zhurn., 40:6 (1999), 1323–1338 | MR | Zbl

[13] Romanov V. G., Ustoichivost v obratnykh zadachakh, Nauchnyi mir, M., 2005 | MR

[14] Romanov V. G., “Otsenka ustoichivosti resheniya v dvumernoi obratnoi zadache elektrodinamiki”, Sib. mat. zhurn., 44:4 (2003), 837–850 | MR | Zbl

[15] Romanov V. G., “Otsenki resheniya odnogo differentsialnogo neravenstva, svyazannogo s giperbolicheskim operatorom vtorogo poryadka i dannymi Koshi na vremenipodobnoi poverkhnosti”, Dokl. RAN, 406:3 (2006), 314–316 | MR | Zbl

[16] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR