Necessary optimality conditions for different phase portraits in a neigh-borhood of a singular arc
Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 129-141 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An optimal control problem with scalar control is characterized by two Hamiltonians related to boundary values of the control parameter. Intermediate (internal) values of the control and the corresponding singular trajectories (arcs) can be constructed in terms of these two Hamiltonians using Poisson brackets. All multiple Poisson brackets using these Hamiltonians two, three, and four times vanish on a singular arc of the second order and the brackets with five Hamiltonians in general differ from zero. There exist six different multiple Poisson brackets in which Hamiltonians are used five times. A regular arc in the optimal phase portrait is linked with a singular arc after one, several, or infinitely many (Fuller phenomenon) switchings. In the paper it is shown that various collections of the signs for these six quantities – multiple Poisson brackets – correspond to the above-mentioned cases. There exist four different collections of the signs for the set consisting of six Poisson brackets. The singularity including a universal surface is investigated for the general case, whereas two other types of singularities are studied in particular examples.
@article{TIMM_2006_12_2_a11,
     author = {A. A. Melikyan},
     title = {Necessary optimality conditions for different phase portraits in a~neigh-borhood of a~singular arc},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {129--141},
     year = {2006},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a11/}
}
TY  - JOUR
AU  - A. A. Melikyan
TI  - Necessary optimality conditions for different phase portraits in a neigh-borhood of a singular arc
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 129
EP  - 141
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a11/
LA  - ru
ID  - TIMM_2006_12_2_a11
ER  - 
%0 Journal Article
%A A. A. Melikyan
%T Necessary optimality conditions for different phase portraits in a neigh-borhood of a singular arc
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 129-141
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a11/
%G ru
%F TIMM_2006_12_2_a11
A. A. Melikyan. Necessary optimality conditions for different phase portraits in a neigh-borhood of a singular arc. Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 129-141. http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a11/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976, 392 pp. | MR | Zbl

[2] Gabasov R., Kirillova F. M., Osobye optimalnye upravleniya, Nauka, M., 1973, 256 pp. | MR

[3] Isaacs R., Differential Games, Wiley, New York etc., 1965 ; Aizeks R., Differentsialnye igry, Mir, M., 1967 | MR | Zbl | MR

[4] Fuller A. T., “Study of an optimum non-linear control system”, J. of Electronics and Control, 15:1 (1963), 63–71 | MR

[5] Wonham W. M., “Note on a problem in optimal non-linear control”, J. of Electronics and Control, 15:1 (1963), 59–62 | MR

[6] Zelikin M. I., Borisov V. F., Theory of Chattering Control with Applications to Astronautics, Robotics, Economics and Engineering, Birkhäuser, Boston, 1993, 256 pp. | MR

[7] Melikyan A. A., Generalized Characteristics of First Order PDEs: Applications in Optimal Control and Differential Games, Birkhäuser, Boston, 1998, 320 pp. | MR | Zbl

[8] Melikyan A. A., “Singulyarnye kharakteristiki uravnenii v chastnykh proizvodnykh pervogo poryadka”, Dokl. RAN, 351:1 (1996), 24–28 | MR | Zbl

[9] Subbotin A. I., Obobschennye resheniya uravnenii v chastnykh proizvodnykh pervogo poryadka: perspektivy dinamicheskoi optimizatsii, In-t kompyut. issled., Moskva–Izhevsk, 2003, 335 pp.

[10] Aldakimov Yu. V., Melikyan A. A., Naumov G. V., “Perestroika rezhima v odnoparametricheskom semeistve zadach optimalnogo upravleniya”, Prikl. matematika i mekhanika, 65:3 (2001), 400–407 | MR | Zbl