Estimates of the convergence rate for a dynamical reconstruction algorithm
Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 119-128 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For an algorithm of dynamical approximation of an unknown input, constructive (the most relevant in respect to practical application) accuracy estimates are obtained. To provide a complete idea of an algorithm's effectiveness, one should give not only an upper estimate of its accuracy, but also a lower estimate. The case when the upper and lower estimates have the same order (with respect to the indicator of observation accuracy) is the most informative. The aim of the paper is to obtain estimates of this kind.
@article{TIMM_2006_12_2_a10,
     author = {A. S. Mart'yanov},
     title = {Estimates of the convergence rate for a~dynamical reconstruction algorithm},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {119--128},
     year = {2006},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a10/}
}
TY  - JOUR
AU  - A. S. Mart'yanov
TI  - Estimates of the convergence rate for a dynamical reconstruction algorithm
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 119
EP  - 128
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a10/
LA  - ru
ID  - TIMM_2006_12_2_a10
ER  - 
%0 Journal Article
%A A. S. Mart'yanov
%T Estimates of the convergence rate for a dynamical reconstruction algorithm
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 119-128
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a10/
%G ru
%F TIMM_2006_12_2_a10
A. S. Mart'yanov. Estimates of the convergence rate for a dynamical reconstruction algorithm. Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 119-128. http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a10/

[1] Kryazhimskii A. V., Osipov Yu. S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 51–60 | MR

[2] Kryazhimskii A. V., Osipov Yu. S., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, 1995 | MR | Zbl

[3] Maksimov V. I., Pandolfi L., “O rekonstruktsii neogranichennykh upravlenii v nelineinykh dinamicheskikh sistemakh”, Prikl. matematika i mekhanika, 65:3 (2001), 385–390 | MR

[4] Osipov Yu. S., Kryazhimskii A. V., Maksimov V. I., “Dinamicheskie obratnye zadachi dlya parabolicheskikh sistem”, Differents. uravneniya, 36:5 (2000), 579–597 | MR | Zbl

[5] Korotkii A. I., Tsepelev I. A., “Verkhnyaya i nizhnyaya otsenki tochnosti v zadache dinamicheskogo opredeleniya parametrov”, Tr. In-ta matematiki i mekhaniki, 4, UrO RAN, Ekaterinburg, 1996, 227–238 | MR | Zbl

[6] Maksimov V. I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, UrO RAN, Ekaterinburg, 2000, 304 pp.

[7] Vasileva E. V., “Nizhnie otsenki skhodimosti algoritmov dinamicheskoi rekonstruktsii dlya sistem s raspredelennymi parametrami”, Mat. zametki, 76:5 (2004), 675–687 | MR

[8] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988, 552 pp. | MR | Zbl