@article{TIMM_2006_12_2_a10,
author = {A. S. Mart'yanov},
title = {Estimates of the convergence rate for a~dynamical reconstruction algorithm},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {119--128},
year = {2006},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a10/}
}
A. S. Mart'yanov. Estimates of the convergence rate for a dynamical reconstruction algorithm. Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 119-128. http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a10/
[1] Kryazhimskii A. V., Osipov Yu. S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 51–60 | MR
[2] Kryazhimskii A. V., Osipov Yu. S., Inverse problems for ordinary differential equations: dynamical solutions, Gordon and Breach, 1995 | MR | Zbl
[3] Maksimov V. I., Pandolfi L., “O rekonstruktsii neogranichennykh upravlenii v nelineinykh dinamicheskikh sistemakh”, Prikl. matematika i mekhanika, 65:3 (2001), 385–390 | MR
[4] Osipov Yu. S., Kryazhimskii A. V., Maksimov V. I., “Dinamicheskie obratnye zadachi dlya parabolicheskikh sistem”, Differents. uravneniya, 36:5 (2000), 579–597 | MR | Zbl
[5] Korotkii A. I., Tsepelev I. A., “Verkhnyaya i nizhnyaya otsenki tochnosti v zadache dinamicheskogo opredeleniya parametrov”, Tr. In-ta matematiki i mekhaniki, 4, UrO RAN, Ekaterinburg, 1996, 227–238 | MR | Zbl
[6] Maksimov V. I., Zadachi dinamicheskogo vosstanovleniya vkhodov beskonechnomernykh sistem, UrO RAN, Ekaterinburg, 2000, 304 pp.
[7] Vasileva E. V., “Nizhnie otsenki skhodimosti algoritmov dinamicheskoi rekonstruktsii dlya sistem s raspredelennymi parametrami”, Mat. zametki, 76:5 (2004), 675–687 | MR
[8] Gantmakher F. R., Teoriya matrits, Nauka, M., 1988, 552 pp. | MR | Zbl