On asymptotic accuracy in $L_1$ of a dynamical algorithm for reconstructing a disturbance
Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 18-26
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, a modification of the dynamical algorithm by Yu. S. Osipov and A. V. Kryazhimskii is suggested. This modification possesses in the space $L_1$ an asymptotic order of accuracy arbitrarily close to 1/2. A possibility to attain this order in the class of finite-step dynamical algorithms is considered.
@article{TIMM_2006_12_2_a1,
     author = {A. Yu. Vdovin and A. V. Kim and S. S. Rubleva},
     title = {On asymptotic accuracy in $L_1$ of a~dynamical algorithm for reconstructing a~disturbance},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {18--26},
     year = {2006},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a1/}
}
TY  - JOUR
AU  - A. Yu. Vdovin
AU  - A. V. Kim
AU  - S. S. Rubleva
TI  - On asymptotic accuracy in $L_1$ of a dynamical algorithm for reconstructing a disturbance
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 18
EP  - 26
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a1/
LA  - ru
ID  - TIMM_2006_12_2_a1
ER  - 
%0 Journal Article
%A A. Yu. Vdovin
%A A. V. Kim
%A S. S. Rubleva
%T On asymptotic accuracy in $L_1$ of a dynamical algorithm for reconstructing a disturbance
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 18-26
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a1/
%G ru
%F TIMM_2006_12_2_a1
A. Yu. Vdovin; A. V. Kim; S. S. Rubleva. On asymptotic accuracy in $L_1$ of a dynamical algorithm for reconstructing a disturbance. Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 18-26. http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a1/

[1] Kryazhimskii A. V., Osipov Yu. S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Tekhn. kibernetika, 1983, no. 2, 51–60 | MR

[2] Kryazhimskii A. V., Maksimov V. I., Osipov Yu. S., “O pozitsionnom modelirovanii v dinamicheskikh sistemakh”, Prikl. matematika i mekhanika, 47:6 (1983), 815–825 | MR

[3] Krjažimskiĭ A. V., Osipov Yu. S., “On positional calculation on $\Omega$-normal controls in dynamical system”, Problems of Control and Information Theory, 13:6 (1984), 425–436 | MR

[4] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985 | MR

[5] Vdovin A. Yu., O tochnosti algoritmov dinamicheskogo vosstanovleniya vozmuscheniya, Dep. v VINITI 20.04.89, No 2584-V89, IMM UrO RAN, Sverdlovsk, 1989, 40

[6] Bakhvalov N. S., Chislennye metody, Nauka, M., 1974 | Zbl

[7] Natanson I. P., Teoriya funktsii veschestvennogo peremennogo, Nauka, M., 1974

[8] Vasin V. V., Metody resheniya neustoichivykh zadach, UrGU, Sverdlovsk, 1989