On asymptotic accuracy in $L_1$ of a~dynamical algorithm for reconstructing a~disturbance
Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 18-26

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, a modification of the dynamical algorithm by Yu. S. Osipov and A. V. Kryazhimskii is suggested. This modification possesses in the space $L_1$ an asymptotic order of accuracy arbitrarily close to 1/2. A possibility to attain this order in the class of finite-step dynamical algorithms is considered.
@article{TIMM_2006_12_2_a1,
     author = {A. Yu. Vdovin and A. V. Kim and S. S. Rubleva},
     title = {On asymptotic accuracy in $L_1$ of a~dynamical algorithm for reconstructing a~disturbance},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {18--26},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a1/}
}
TY  - JOUR
AU  - A. Yu. Vdovin
AU  - A. V. Kim
AU  - S. S. Rubleva
TI  - On asymptotic accuracy in $L_1$ of a~dynamical algorithm for reconstructing a~disturbance
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 18
EP  - 26
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a1/
LA  - ru
ID  - TIMM_2006_12_2_a1
ER  - 
%0 Journal Article
%A A. Yu. Vdovin
%A A. V. Kim
%A S. S. Rubleva
%T On asymptotic accuracy in $L_1$ of a~dynamical algorithm for reconstructing a~disturbance
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 18-26
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a1/
%G ru
%F TIMM_2006_12_2_a1
A. Yu. Vdovin; A. V. Kim; S. S. Rubleva. On asymptotic accuracy in $L_1$ of a~dynamical algorithm for reconstructing a~disturbance. Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 18-26. http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a1/