On asymptotic accuracy in $L_1$ of a~dynamical algorithm for reconstructing a~disturbance
Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 18-26
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper, a modification of the dynamical algorithm by Yu. S. Osipov and A. V. Kryazhimskii is suggested. This modification possesses in the space $L_1$ an asymptotic order of accuracy arbitrarily close to 1/2. A possibility to attain this order in the class of finite-step dynamical algorithms is considered.
@article{TIMM_2006_12_2_a1,
author = {A. Yu. Vdovin and A. V. Kim and S. S. Rubleva},
title = {On asymptotic accuracy in $L_1$ of a~dynamical algorithm for reconstructing a~disturbance},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {18--26},
publisher = {mathdoc},
volume = {12},
number = {2},
year = {2006},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a1/}
}
TY - JOUR AU - A. Yu. Vdovin AU - A. V. Kim AU - S. S. Rubleva TI - On asymptotic accuracy in $L_1$ of a~dynamical algorithm for reconstructing a~disturbance JO - Trudy Instituta matematiki i mehaniki PY - 2006 SP - 18 EP - 26 VL - 12 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a1/ LA - ru ID - TIMM_2006_12_2_a1 ER -
%0 Journal Article %A A. Yu. Vdovin %A A. V. Kim %A S. S. Rubleva %T On asymptotic accuracy in $L_1$ of a~dynamical algorithm for reconstructing a~disturbance %J Trudy Instituta matematiki i mehaniki %D 2006 %P 18-26 %V 12 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a1/ %G ru %F TIMM_2006_12_2_a1
A. Yu. Vdovin; A. V. Kim; S. S. Rubleva. On asymptotic accuracy in $L_1$ of a~dynamical algorithm for reconstructing a~disturbance. Trudy Instituta matematiki i mehaniki, Control, stability, and inverse problems of dynamics, Tome 12 (2006) no. 2, pp. 18-26. http://geodesic.mathdoc.fr/item/TIMM_2006_12_2_a1/