Buffer phenomenon in systems close to two-dimensional Hamiltonian ones
Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 109-141

Voir la notice de l'article provenant de la source Math-Net.Ru

Plane Hamiltonian systems perturbed by small time-periodic terms are considered. The conditions are established under which exponentially stable periodic solutions are accumulated infinitely in these systems as the perturbations tend to zero or, in other words, the buffer phenomenon occurs. It is shown that this phenomenon is typical for a wide range of classical mechanical problems described by equations of the pendulum type.
@article{TIMM_2006_12_1_a9,
     author = {A. Yu. Kolesov and E. F. Mishchenko and N. Kh. Rozov},
     title = {Buffer phenomenon in systems close to two-dimensional {Hamiltonian} ones},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {109--141},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a9/}
}
TY  - JOUR
AU  - A. Yu. Kolesov
AU  - E. F. Mishchenko
AU  - N. Kh. Rozov
TI  - Buffer phenomenon in systems close to two-dimensional Hamiltonian ones
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 109
EP  - 141
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a9/
LA  - ru
ID  - TIMM_2006_12_1_a9
ER  - 
%0 Journal Article
%A A. Yu. Kolesov
%A E. F. Mishchenko
%A N. Kh. Rozov
%T Buffer phenomenon in systems close to two-dimensional Hamiltonian ones
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 109-141
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a9/
%G ru
%F TIMM_2006_12_1_a9
A. Yu. Kolesov; E. F. Mishchenko; N. Kh. Rozov. Buffer phenomenon in systems close to two-dimensional Hamiltonian ones. Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 109-141. http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a9/