Approximation of nonsmooth solutions of linear ill-posed problems
Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 64-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the multidimensional case, for the Tikhonov regularization, two new families of stabilizers containing the norms of the Lipschitz spaces and the norms of the Sobolev spaces with fractional derivatives are suggested. Theorems of convergence of Tikhonov regularized approximate solutions and their discrete approximations are proved. Detailed step-by-step investigation of the solving algorithm is performed by the example of an integral Fredholm equation of the first kind.
@article{TIMM_2006_12_1_a5,
     author = {V. V. Vasin},
     title = {Approximation of nonsmooth solutions of linear ill-posed problems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {64--77},
     year = {2006},
     volume = {12},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a5/}
}
TY  - JOUR
AU  - V. V. Vasin
TI  - Approximation of nonsmooth solutions of linear ill-posed problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 64
EP  - 77
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a5/
LA  - ru
ID  - TIMM_2006_12_1_a5
ER  - 
%0 Journal Article
%A V. V. Vasin
%T Approximation of nonsmooth solutions of linear ill-posed problems
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 64-77
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a5/
%G ru
%F TIMM_2006_12_1_a5
V. V. Vasin. Approximation of nonsmooth solutions of linear ill-posed problems. Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 64-77. http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a5/

[1] Tikhonov A. N., “O regulyarizatsii nekorrektno postavlennykh zadach”, Dokl. AN SSSR, 153:1 (1963), 49–52 | MR | Zbl

[2] Vasin V. V., “Regularization and iterative approximation for linear ill-posed problems in the space of functions of bounded variation”, Proc. Steklov Inst. Math., Suppl. 1, 2002, S225–S239 | MR

[3] Vasin V. V., Serezhnikova T. I., “Dvukhetapnyi metod approksimatsii negladkikh reshenii i vosstanovlenie zashumlennogo izobrazheniya”, Avtomatika i telemekhanika, 2004, no. 2, 126–135 | MR | Zbl

[4] Leonov A. S., “Kusochno-ravnomernaya regulyarizatsiya dvumernykh nekorrektnykh zadach s razryvnymi resheniyami. Chislennyi analiz”, Zhurn. vychisl. matematiki i matem. fiz., 39:12 (1999), 1939–1944 | MR | Zbl

[5] Vogel C. R., Computational methods for inverse problems, SIAM, Philadelphia, 2002, 183 pp. | MR | Zbl

[6] Vogel C., Hanke M., Two-preconditioners for regularized inverse problems II: Implementation and numerical results, Preprint, 1998; Internet: http://www.math.montana.edu/~vogel/Papers/Papers.html

[7] Vasin V. V., “Stable approximation of nonsmooth solutions to ill-posed problems”, Dokl. Akad. Nauk, 402:5 (2005), 586–589 | MR

[8] V. V. Vasin, Perestoronina G. Ya., Prutkin I. L., Timerkhanova L. Yu., “Reshenie trekhmernykh obratnykh zadach gravimetrii i magnitometrii dlya trekhsloinoi sredy”, Mat. modelirovanie, 15:2 (2003), 69–76 | Zbl

[9] Ageev A. L., Vasin V. V., Bessonova E. N., Markushevich V. M., “Radiozondirovanie ionosfery na dvukh chastotakh. Algoritmicheskii analiz integralnogo uravneniya Fredgolma–Stiltesa”, Teoreticheskie problemy v geofizike, Nauka, M., 1997, 101–118; Вычислительная сейсмология, 29

[10] Vasin V. V., Ageev A. L., Ill-Posed Problems with A Priori Information, VSP, Utrecht, 1995, 255 pp. | MR | Zbl

[11] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii, Izd-vo MGU, M., 1999, 236 pp.

[12] Kryazhimskii A. V., Osipov Yu. S., “O modelirovanii upravleniya v dinamicheskoi sisteme”, Izv. AN SSSR. Ser. Tekhn. kibernetika, 1983, no. 2, 51–60 | MR

[13] Muskhelishvili N. I., Singulyarnye uravneniya, Nauka, M., 1968, 511 pp. | MR

[14] Kolmogorov F. N., Fomin S. V., Elementy funktsionalnogo analiza, Nauka, M., 1981, 542 pp.

[15] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye prilozheniya, Nauka i tekhnika, Minsk, 1987, 688 pp. | MR | Zbl

[16] Stummel F., “Diskrete Konvergenz Linearer Operatoren. I, II”, Math. Ann., 190 (1970), 45–92 ; Math. Z., 120 (1971), 231–264 | DOI | MR | Zbl | DOI | MR | Zbl

[17] Vainikko G. M., Funktionalanalysis der Diskretisierungs Methoden, Teubner. Verlagsgesellschaft, Leipzig, 1976, 137 s. | MR | Zbl

[18] Stummel F., “Discrete Convergence of Mappings”, Top. Numer. Anal., New York, 1973, 285–310 | MR | Zbl

[19] Vasin V. V., “Obschaya skhema diskretizatsii regulyarizuyuschikh algoritmov v banakhovykh prostranstvakh”, Dokl. AN SSSR, 258:2 (1981), 271–275 | MR | Zbl

[20] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo SO AN SSSR, Novosibirsk, 1962, 255 pp.

[21] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983, 384 pp. | MR

[22] Demyanov V. F., Vasilev P. V., Nedifferentsiruemaya optimizatsiya, Nauka, M., 1981, 384 pp. | MR

[23] Vasin V. V., Eremin I. I., Operatory i iteratsionnye protsessy feierovskogo tipa. Teoriya i prilozheniya, Izd-vo UrO RAN, Ekaterinburg, 2005, 210 pp. | MR