Methods for solving unstable equilibrium programming problems with coupled variables
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 48-63
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Regularization (stabilization, residual and quasisolution) methods for solving an unstable equilibrium programming problem are proposed for the case when not only the objective function but also the set determined by coupled inequality constraints are given inexactly. The convergence of these methods is studied. A regularizing operator is constructed.
			
            
            
            
          
        
      @article{TIMM_2006_12_1_a4,
     author = {F. P. Vasil'ev and A. S. Antipin},
     title = {Methods for solving unstable equilibrium programming problems with coupled variables},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {48--63},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a4/}
}
                      
                      
                    TY - JOUR AU - F. P. Vasil'ev AU - A. S. Antipin TI - Methods for solving unstable equilibrium programming problems with coupled variables JO - Trudy Instituta matematiki i mehaniki PY - 2006 SP - 48 EP - 63 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a4/ LA - ru ID - TIMM_2006_12_1_a4 ER -
%0 Journal Article %A F. P. Vasil'ev %A A. S. Antipin %T Methods for solving unstable equilibrium programming problems with coupled variables %J Trudy Instituta matematiki i mehaniki %D 2006 %P 48-63 %V 12 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a4/ %G ru %F TIMM_2006_12_1_a4
F. P. Vasil'ev; A. S. Antipin. Methods for solving unstable equilibrium programming problems with coupled variables. Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 48-63. http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a4/
