On the fall of a heavy rigid body in an ideal fluid
Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 25-47 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider a problem about the motion of a heavy rigid body in an unbounded volume of an ideal irrotational incompressible fluid. This problem generalizes a classical Kirchhoff problem describing the inertial motion of a rigid body in a fluid. We study different special statements of the problem: the plane motion and the motion of an axially symmetric body. In the general case of motion of a rigid body, we study the stability of partial solutions and point out limiting behaviors of the motion when the time increases infinitely. Using numerical computations on the plane of initial conditions, we construct domains corresponding to different types of the asymptotic behavior. We establish the fractal nature of the boundary separating these domains.
@article{TIMM_2006_12_1_a3,
     author = {A. V. Borisov and V. V. Kozlov and I. S. Mamaev},
     title = {On the fall of a~heavy rigid body in an ideal fluid},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {25--47},
     year = {2006},
     volume = {12},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a3/}
}
TY  - JOUR
AU  - A. V. Borisov
AU  - V. V. Kozlov
AU  - I. S. Mamaev
TI  - On the fall of a heavy rigid body in an ideal fluid
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 25
EP  - 47
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a3/
LA  - ru
ID  - TIMM_2006_12_1_a3
ER  - 
%0 Journal Article
%A A. V. Borisov
%A V. V. Kozlov
%A I. S. Mamaev
%T On the fall of a heavy rigid body in an ideal fluid
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 25-47
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a3/
%G ru
%F TIMM_2006_12_1_a3
A. V. Borisov; V. V. Kozlov; I. S. Mamaev. On the fall of a heavy rigid body in an ideal fluid. Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 25-47. http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a3/

[1] Borisov A. V., “Neobkhodimye i dostatochnye usloviya integriruemosti uravnenii Kirkhgofa”, Regulyarnaya i khaoticheskaya dinamika, 1:2 (1996), 61–73 | MR

[2] Borisov A. V., Kiryanov A. I., “Neintegriruemost uravnenii Kirkhgofa”, Matematicheskie metody v mekhanike, MGU, M., 1990, 16–21

[3] Borisov A. V., Mamaev I. S., “Sluchai Gessa v dinamike tverdogo tela”, Prikl. matematika i mekhanika, 67:2 (2003), 256–265 | MR | Zbl

[4] Borisov A. V., Mamaev I. S., Kholmskaya A. G., “Sluchai S. V. Kovalevskoi i novye integriruemye sistemy dinamiki”, Vestn. molodykh uchenykh. Prikl. Mat. Mekh., SPb., 2000, no. 4, 13–25

[5] Goryachev D. N., “K voprosu o dvizhenii tyazhelogo tela v zhidkosti”, Izv. Imper. ob-va lyubitelei estestvoznaniya pri Mosk. Imperat. Univ., 78:2 (1893), 59–61

[6] Deryabin M. V., “Ob ustoichivosti ravnouskorennykh vraschenii tyazhelogo tverdogo tela v idealnoi zhidkosti”, Izv. RAN. MTT, 2002, no. 5, 30–34

[7] Deryabin M. V., Kozlov V. V., “Ob effekte “vynyrivaniya” tyazhelogo tverdogo tela v zhidkosti”, Izv. RAN. MTT, 2002, no. 1, 68–74

[8] Coddington E. A., Levinson N., Theory of ordinary differential equations, McGraw-Hill, New York–Toronto–London, 1955 | MR | Zbl

[9] Kozlov V. V., “O padenii tyazhelogo tverdogo tela v idealnoi zhidkosti”, Izv. AN SSSR. Cer. Mekh. tv. tela, 1989, no. 5, 10–16

[10] Kozlov V. V, “O polinomialnykh integralakh dinamicheskikh sistem s polutora stepenyami svobody”, Mat. zametki, 45:4 (1989), 46–52 | Zbl

[11] Kozlov V. V., “Ob ustoichivosti polozhenii ravnovesiya v nestatsionarnom silovom pole”, Prikl. matematika i mekhanika, 55:1 (1991), 12–19 | MR | Zbl

[12] Kozlov V. V., Onischenko D. A., “Neintegriruemost uravnenii Kirkhgofa”, Dokl. AN SSSR., 266:6 (1982), 1298–1300 | MR | Zbl

[13] Lamb H., Hydrodynamics, ed. 6-th., Dover publ., N. Y., 1945

[14] Neishtadt A. I., “Ob evolyutsii vrascheniya tverdogo tela pod deistviem summy postoyannogo i dissipativnogo vozmuschayuschikh momentov”, Izv. AN SSSR. Ser. Mekh. tv. tela, 1980, no. 6, 30–36

[15] Ramodanov S. M., “Asimptotika reshenii uravnenii Chaplygina”, Vestn. MGU. Ser. Mat. Mekh., 1995, no. 3, 93–97 | MR | Zbl

[16] Steklov V. A., Dopolneniya k sochineniyu “O dvizhenii tverdogo tela v zhidkosti”, Kharkov, 1895

[17] Steklov V. A., O dvizhenii tverdogo tela v zhidkosti, Kharkov, 1893, 234 pp.

[18] Steklov V. A., “O nekotorykh vozmozhnykh dvizheniyakh tverdogo tela v zhidkosti”, Trudy otd. fiz. nauk ob-va lyubitelei estestvoznaniya, antropologii i etnografii, 7, 1895, 1–40

[19] Chaplygin S. A., “Novoe chastnoe reshenie zadachi o dvizhenii tverdogo tela v zhidkosti”, Sobr. soch., T. 1, GITTL, M.-L., 1948, 337–346; Изд. 1-е: Труды отд. физ. наук об-ва любителей естествознания, 11, No 2, 1903, 7–10

[20] Chaplygin S. A., “O dvizhenii tyazhelykh tel v neszhimaemoi zhidkosti”, Poln. sobr. soch., T. 1, Izd-vo AN SSSR, L., 1933, 133–150

[21] Aref H., Jones S. W., “Chaotic motion of a solid through ideal fluid”, Phys. Fluids A, 5:12 (1993), 3026–3028 | DOI | MR | Zbl

[22] Bertolli M. L., Bolotin S. V., “Doubly asymptotic trajectories of Lagrangian systems in homogeneous force fields”, Ann. di Matem. Pura ed. Applicata, 174:1 (1998), 253–275 | DOI | MR

[23] Deryabin M. V., “On asymptotics of Chaplygin equation”, Reg. Chaot. Dyn., 3:1 (1998), 93–97 | DOI | MR | Zbl

[24] Deryabin M. V., “On stability of uniformly-accelerated motions of an axially-symmetric rigid body in an ideal fluid”, Z. Angew. Math. Mech., 83:3 (2003), 197–203 | DOI | MR | Zbl