On the fall of a~heavy rigid body in an ideal fluid
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 25-47
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider a problem about the motion of a heavy rigid body in an unbounded volume of an ideal irrotational incompressible fluid. This problem generalizes a classical Kirchhoff problem describing the inertial motion of a rigid body in a fluid. We study different special statements of the problem: the plane motion and the motion of an axially symmetric body. In the general case of motion of a rigid body, we study the stability of partial solutions and point out limiting behaviors of the motion when the time increases infinitely. Using numerical computations on the plane of initial conditions, we construct domains corresponding to different types of the asymptotic behavior. We establish the fractal nature of the boundary separating these domains.
			
            
            
            
          
        
      @article{TIMM_2006_12_1_a3,
     author = {A. V. Borisov and V. V. Kozlov and I. S. Mamaev},
     title = {On the fall of a~heavy rigid body in an ideal fluid},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {25--47},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a3/}
}
                      
                      
                    TY - JOUR AU - A. V. Borisov AU - V. V. Kozlov AU - I. S. Mamaev TI - On the fall of a~heavy rigid body in an ideal fluid JO - Trudy Instituta matematiki i mehaniki PY - 2006 SP - 25 EP - 47 VL - 12 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a3/ LA - ru ID - TIMM_2006_12_1_a3 ER -
A. V. Borisov; V. V. Kozlov; I. S. Mamaev. On the fall of a~heavy rigid body in an ideal fluid. Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 25-47. http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a3/
