A numerical method for the minimax solution of the Bellman equation in the Cauchy problem with additional restrictions
Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 208-215 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A new numerical method is suggested for constructing the value function in optimal control problems of prescribed duration with positional running cost along motions of controlled dynamical systems. The algorithm is based on a backward procedure involving characteristics of the Bellman equation. Estimations of the approximation are provided. Results of simulations for a model example are exposed.
@article{TIMM_2006_12_1_a15,
     author = {N. N. Subbotina and T. B. Tokmantsev},
     title = {A~numerical method for the minimax solution of the {Bellman} equation in the {Cauchy} problem with additional restrictions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {208--215},
     year = {2006},
     volume = {12},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a15/}
}
TY  - JOUR
AU  - N. N. Subbotina
AU  - T. B. Tokmantsev
TI  - A numerical method for the minimax solution of the Bellman equation in the Cauchy problem with additional restrictions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 208
EP  - 215
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a15/
LA  - ru
ID  - TIMM_2006_12_1_a15
ER  - 
%0 Journal Article
%A N. N. Subbotina
%A T. B. Tokmantsev
%T A numerical method for the minimax solution of the Bellman equation in the Cauchy problem with additional restrictions
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 208-215
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a15/
%G ru
%F TIMM_2006_12_1_a15
N. N. Subbotina; T. B. Tokmantsev. A numerical method for the minimax solution of the Bellman equation in the Cauchy problem with additional restrictions. Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 208-215. http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a15/

[1] A. I. Subbotin, V. S. Patsko (red.), Algoritmy i programmy resheniya lineinykh differentsialnykh igr, IMM UNTs AN SSSR, Sverdlovsk, 1984, 296 pp.

[2] Bellman R., Dinamicheskoe programmirovanie, Izd-vo inostr. lit., M., 1960, 400 pp. | MR

[3] Kamzolkin D. V., “Chislennyi metod priblizhennogo vychisleniya funktsii tseny dlya zadachi optimalnogo upravleniya s terminalnym funktsionalom”, Vychislitelnye metody i programmirovanie, 5, no. 2, Izd-vo Mosk. un-ta, M., 2004, 121–132

[4] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR | Zbl

[5] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp. | MR

[6] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977 | MR | Zbl

[7] Osipov Yu. S., Zadachi teorii differentsialno-raznostnykh igr, Dissertatsiya na soisk. uchen. stepeni d-ra fiz.-mat. nauk, Leningradskii gos. universitet im. A. A. Zhdanova, 1971

[8] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961, 392 pp. | MR | Zbl

[9] Subbotina N. N., Differentsialnye uravneniya, Sovremennaya matematika i ee prilozheniya, 20, Akademiya Nauk Gruzii, Institut kibernetiki, Tbilisi, 2004, 132 pp.

[10] Tarasev A. M., Uspenskii A. A., Ushakov V. N., “Approksimatsionnye operatory i konechno-raznostnye skhemy dlya postroeniya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, Izvestiya RAN. Tekhn. kibernetika, 1994, no. 3, 173–185 | MR

[11] Ushakov V. N., Khripunov A. P., “O priblizhennom postroenii reshenii v igrovykh zadachakh upravleniya”, Prikl. matematika i mekhanika, 61:3 (1997), 413–421 | MR | Zbl

[12] Bardi M., Falcone M., Soravia P., “Numerical methods for pursuit-evasion games via viscosity solutions”, Stochastic and differential games: theory and numerical methods, Annals of the International Society of Dynamic Games, 4, eds. M. Bardi, T. Parthasarathy and T. E. S. Raghavan, Birkhäuser, Boston, 1999, 289–303 | MR

[13] Melikyan A. A., Generalized Characteristics of First Order PDEs: Applications in Optimal Control and Differential Games, Birkhäuser, Boston, 1998, 310 pp. | MR | Zbl

[14] Souganidis P., “Approximation schemes for viscosity solutions of Hamilton–Jacobi equations”, J. Diff. Eqns., 59 (1985), 1–43 | DOI | MR | Zbl

[15] Subbotin A. I., Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspectives, Birkhäuser, Boston, 1995, 312 pp. | MR