@article{TIMM_2006_12_1_a15,
author = {N. N. Subbotina and T. B. Tokmantsev},
title = {A~numerical method for the minimax solution of the {Bellman} equation in the {Cauchy} problem with additional restrictions},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {208--215},
year = {2006},
volume = {12},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a15/}
}
TY - JOUR AU - N. N. Subbotina AU - T. B. Tokmantsev TI - A numerical method for the minimax solution of the Bellman equation in the Cauchy problem with additional restrictions JO - Trudy Instituta matematiki i mehaniki PY - 2006 SP - 208 EP - 215 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a15/ LA - ru ID - TIMM_2006_12_1_a15 ER -
%0 Journal Article %A N. N. Subbotina %A T. B. Tokmantsev %T A numerical method for the minimax solution of the Bellman equation in the Cauchy problem with additional restrictions %J Trudy Instituta matematiki i mehaniki %D 2006 %P 208-215 %V 12 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a15/ %G ru %F TIMM_2006_12_1_a15
N. N. Subbotina; T. B. Tokmantsev. A numerical method for the minimax solution of the Bellman equation in the Cauchy problem with additional restrictions. Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 208-215. http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a15/
[1] A. I. Subbotin, V. S. Patsko (red.), Algoritmy i programmy resheniya lineinykh differentsialnykh igr, IMM UNTs AN SSSR, Sverdlovsk, 1984, 296 pp.
[2] Bellman R., Dinamicheskoe programmirovanie, Izd-vo inostr. lit., M., 1960, 400 pp. | MR
[3] Kamzolkin D. V., “Chislennyi metod priblizhennogo vychisleniya funktsii tseny dlya zadachi optimalnogo upravleniya s terminalnym funktsionalom”, Vychislitelnye metody i programmirovanie, 5, no. 2, Izd-vo Mosk. un-ta, M., 2004, 121–132
[4] Klark F., Optimizatsiya i negladkii analiz, Nauka, M., 1988, 280 pp. | MR | Zbl
[5] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp. | MR
[6] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977 | MR | Zbl
[7] Osipov Yu. S., Zadachi teorii differentsialno-raznostnykh igr, Dissertatsiya na soisk. uchen. stepeni d-ra fiz.-mat. nauk, Leningradskii gos. universitet im. A. A. Zhdanova, 1971
[8] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1961, 392 pp. | MR | Zbl
[9] Subbotina N. N., Differentsialnye uravneniya, Sovremennaya matematika i ee prilozheniya, 20, Akademiya Nauk Gruzii, Institut kibernetiki, Tbilisi, 2004, 132 pp.
[10] Tarasev A. M., Uspenskii A. A., Ushakov V. N., “Approksimatsionnye operatory i konechno-raznostnye skhemy dlya postroeniya obobschennykh reshenii uravnenii Gamiltona–Yakobi”, Izvestiya RAN. Tekhn. kibernetika, 1994, no. 3, 173–185 | MR
[11] Ushakov V. N., Khripunov A. P., “O priblizhennom postroenii reshenii v igrovykh zadachakh upravleniya”, Prikl. matematika i mekhanika, 61:3 (1997), 413–421 | MR | Zbl
[12] Bardi M., Falcone M., Soravia P., “Numerical methods for pursuit-evasion games via viscosity solutions”, Stochastic and differential games: theory and numerical methods, Annals of the International Society of Dynamic Games, 4, eds. M. Bardi, T. Parthasarathy and T. E. S. Raghavan, Birkhäuser, Boston, 1999, 289–303 | MR
[13] Melikyan A. A., Generalized Characteristics of First Order PDEs: Applications in Optimal Control and Differential Games, Birkhäuser, Boston, 1998, 310 pp. | MR | Zbl
[14] Souganidis P., “Approximation schemes for viscosity solutions of Hamilton–Jacobi equations”, J. Diff. Eqns., 59 (1985), 1–43 | DOI | MR | Zbl
[15] Subbotin A. I., Generalized Solutions of First Order PDEs: The Dynamical Optimization Perspectives, Birkhäuser, Boston, 1995, 312 pp. | MR