Dynamically Stable Cooperative Solutions in Randomly Furcating Differential Games
Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 196-207

Voir la notice de l'article provenant de la source Math-Net.Ru

The paradigm of randomly furcating differential games incorporates stochastic elements via randomly branching payoffs in differential games. This paper considers dynamically stable cooperative solutions in randomly furcating differential games. Analytically tractable payoff distribution procedures contingent upon specific random events are derived. This new approach widens the application of cooperative differential game theory to problems where future environments are not known with certainty.
@article{TIMM_2006_12_1_a14,
     author = {L. A. Petrosyan and D. W.-K. Yeung},
     title = {Dynamically {Stable} {Cooperative} {Solutions} in {Randomly} {Furcating} {Differential} {Games}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {196--207},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a14/}
}
TY  - JOUR
AU  - L. A. Petrosyan
AU  - D. W.-K. Yeung
TI  - Dynamically Stable Cooperative Solutions in Randomly Furcating Differential Games
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 196
EP  - 207
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a14/
LA  - en
ID  - TIMM_2006_12_1_a14
ER  - 
%0 Journal Article
%A L. A. Petrosyan
%A D. W.-K. Yeung
%T Dynamically Stable Cooperative Solutions in Randomly Furcating Differential Games
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 196-207
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a14/
%G en
%F TIMM_2006_12_1_a14
L. A. Petrosyan; D. W.-K. Yeung. Dynamically Stable Cooperative Solutions in Randomly Furcating Differential Games. Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 196-207. http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a14/