One problem on stable tracking of motion
Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 142-156

Voir la notice de l'article provenant de la source Math-Net.Ru

A problem about tracking of a model motion by motion of an object under conditions of uncertainty or conflict [1–7] is considered. Controls are formed in a time-discrete scheme on the basis of step-by-step probabilistic tests.
@article{TIMM_2006_12_1_a10,
     author = {N. N. Krasovskii and A. N. Kotel'nikova},
     title = {One problem on stable tracking of motion},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {142--156},
     publisher = {mathdoc},
     volume = {12},
     number = {1},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a10/}
}
TY  - JOUR
AU  - N. N. Krasovskii
AU  - A. N. Kotel'nikova
TI  - One problem on stable tracking of motion
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 142
EP  - 156
VL  - 12
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a10/
LA  - ru
ID  - TIMM_2006_12_1_a10
ER  - 
%0 Journal Article
%A N. N. Krasovskii
%A A. N. Kotel'nikova
%T One problem on stable tracking of motion
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 142-156
%V 12
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a10/
%G ru
%F TIMM_2006_12_1_a10
N. N. Krasovskii; A. N. Kotel'nikova. One problem on stable tracking of motion. Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 142-156. http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a10/