The Pontryagin Maximum Principle 50 years later
Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 6-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TIMM_2006_12_1_a1,
     author = {A. A. Agrachev and R. V. Gamkrelidze},
     title = {The {Pontryagin} {Maximum} {Principle} 50~years later},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {6--14},
     year = {2006},
     volume = {12},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a1/}
}
TY  - JOUR
AU  - A. A. Agrachev
AU  - R. V. Gamkrelidze
TI  - The Pontryagin Maximum Principle 50 years later
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2006
SP  - 6
EP  - 14
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a1/
LA  - ru
ID  - TIMM_2006_12_1_a1
ER  - 
%0 Journal Article
%A A. A. Agrachev
%A R. V. Gamkrelidze
%T The Pontryagin Maximum Principle 50 years later
%J Trudy Instituta matematiki i mehaniki
%D 2006
%P 6-14
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a1/
%G ru
%F TIMM_2006_12_1_a1
A. A. Agrachev; R. V. Gamkrelidze. The Pontryagin Maximum Principle 50 years later. Trudy Instituta matematiki i mehaniki, Dynamical systems: modeling, optimization, and control, Tome 12 (2006) no. 1, pp. 6-14. http://geodesic.mathdoc.fr/item/TIMM_2006_12_1_a1/

[1] Boltyanskii V. G., Gamkrelidze R. V., Pontryagin L. S., “K teorii optimalnykh protsessov”, Dokl. AN SSSR, 110:1 (1956), 7–10 | MR

[2] Boltyanskii V. G., “Printsip maksimuma v teorii optimalnykh protsessov”, Dokl. AN SSSR, 119:6 (1958), 1070–1073

[3] Gamkrelidze R. V., Principles of Optimal Control Theory, Plenum Press, 1978 | MR | Zbl

[4] Agrachev A. A., Gamkrelidze R. V., “Simplekticheskaya geometriya i neobkhodimye usloviya optimalnosti”, Matem. sbornik, 182:1 (1991), 36–54 | MR

[5] Agrachev A. A., Gamkrelidze R. V., “Feedback-invariant optimal control theory and differential geometry, I. Regular extremals”, J. Dynamical and Control Systems, 3 (1997), 343–389 | DOI | MR | Zbl

[6] Agrachev A. A., “Feedback-invariant optimal control theory and differential geometry, II. Jacobi curves for singular extremals”, J. Dynamical and Control Systems, 4 (1998), 583–604 | DOI | MR | Zbl

[7] Agrachev A. A., “Geometry of optimal control problems and Hamiltonian systems”, Nonlinear and optimal control theory, Lect. Notes in Math., 1932, Springer-Verlag, Berlin, 2008, 1–59 | MR | Zbl