A new cubic element in the FEM
Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 120-130
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In the paper, a new two-dimensional cubic element in the finite element method is suggested. It is proved that, in contrast to the classical element with interpolation at the center of gravity, the new element under the approximation of any admissible derivatives is free of the known condition of “sine of the smallest angle” of triangulation. It proved well to replace this condition by a weaker condition of “sine of the greatest angle” of triangulation. It is established, up to absolute constants, that the obtained estimates of approximation errors of derivatives are unimprovable. For the new element, the estimates of approximation error become worse only for triangles with two small angles. In terms of barycentric coordinates, fundamental interpolating polynomials are explicitly written out for the suggested element.
@article{TIMM_2005_11_2_a9,
     author = {Yu. N. Subbotin},
     title = {A~new cubic element in the {FEM}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {120--130},
     year = {2005},
     volume = {11},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a9/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
TI  - A new cubic element in the FEM
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2005
SP  - 120
EP  - 130
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a9/
LA  - ru
ID  - TIMM_2005_11_2_a9
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%T A new cubic element in the FEM
%J Trudy Instituta matematiki i mehaniki
%D 2005
%P 120-130
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a9/
%G ru
%F TIMM_2005_11_2_a9
Yu. N. Subbotin. A new cubic element in the FEM. Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 120-130. http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a9/

[1] Zenišek A., “Interpolation polynomials on the triangle”, Numer. Math., 15 (1970), 283–296 | DOI | MR | Zbl

[2] Zlamal M., Zenišek A., “Mathematical aspect of the finite element method”, Technical, physical and mathematical principles of the finite element method, eds. V. Kolar et al., Acad. VED, Praha, 1971, 15–39

[3] Ciarlet P. G., Raviart P.-A., “General Lagrange and Hermite interpolation in $R^n$ with application to finite element methods”, Arch. Rational Mech. Anal., 46 (1972), 177–199 | DOI | MR | Zbl

[4] Synge J. L., The hypercircle in mathematical physics, Cambridge Univ. Press, Cambridge, 1957 | MR | Zbl

[5] Babuška I., Aziz A. K., “On the angle condition in the finite element method”, SIAM J. Numer. Anal., 13:2 (1976), 214–226 | DOI | MR | Zbl

[6] Jamet P., “Estimations d'erreur pour des éléments finis droits presque dégénérées”, Rev. Française Automat. Informat. Recherche Opérationnelle. Sér. Rouge Anal. Numer., 10 (1976), 43–61 | MR

[7] Subbotin Yu. N., “Zavisimost otsenok mnogomernoi kusochno-polinomialnoi approksimatsii ot geometricheskikh kharakteristik triangulyatsii”, Tr. MIAN, 189, 1989, 117–137 | MR

[8] Subbotin Yu. N., “Zavisimost otsenok approksimatsii interpolyatsionnymi polinomami pyatoi stepeni ot geometricheskikh kharakteristik treugolnika”, Tr. In-ta matematiki i mekhaniki UrO RAN, 2, Ekaterinburg, 1992, 110–119 | MR | Zbl

[9] Baidakova N. V., “On same interpolation process by polynomials of degree $4m+1$ on the triangle”, Rus. J. Numer. Anal. Math. Modeling, 14:2 (1999), 87–107 | MR | Zbl

[10] Latypova N. V., “Error estimates for approximation by polynomials of degree $4k+3$ on the triangle”, Proc. Steklov Inst. Math., Suppl. 1, 2002, S190–S213 | MR

[11] Deklu Zh., Metod konechnykh elementov, Mir, Moskva, 1976, 96 pp.

[12] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, Moskva, 1980, 512 pp. | MR

[13] Latypova N. V., “Pogreshnost kusochno-kubicheskoi interpolyatsii na treugolnike”, Vestn. Udmurt. un-ta. Ser. Matematika, 2003, 3–10

[14] Baidakova N. V., “Ob odnom sposobe ermitovoi interpolyatsii mnogochlenami 3-i stepeni na treugolnike”, Tr. In-ta matematiki i mekhaniki UrO RAN, 11, Ekaterinburg, 2005, 47–52