Some extremal problems for periodic functions with conditions on their values and Fourier coefficients
Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 92-111
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A solution of the discrete variant of the Fejér problem on the greatest value, at zero, of an even nonnegative trigonometric polynomial with fixed average is given. As a corollary, for all rational $h$, $0$, the greatest averages are obtained for continuous 1-periodic even functions, with nonnegative Fourier coefficients and a fixed value at zero, equal to zero on the segment $[h,1-h]$ (the Turán problem) or nonpositive on this segment (the Delsarte problem). Similar problems are also solved in the discrete case. In addition, in one case, a solution of the extremal Montgomery problem for nonnegative trigonometric polynomials is given.
@article{TIMM_2005_11_2_a7,
     author = {V. I. Ivanov and D. V. Gorbachev and Yu. D. Rudomazina},
     title = {Some extremal problems for periodic functions with conditions on their values and {Fourier} coefficients},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {92--111},
     year = {2005},
     volume = {11},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a7/}
}
TY  - JOUR
AU  - V. I. Ivanov
AU  - D. V. Gorbachev
AU  - Yu. D. Rudomazina
TI  - Some extremal problems for periodic functions with conditions on their values and Fourier coefficients
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2005
SP  - 92
EP  - 111
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a7/
LA  - ru
ID  - TIMM_2005_11_2_a7
ER  - 
%0 Journal Article
%A V. I. Ivanov
%A D. V. Gorbachev
%A Yu. D. Rudomazina
%T Some extremal problems for periodic functions with conditions on their values and Fourier coefficients
%J Trudy Instituta matematiki i mehaniki
%D 2005
%P 92-111
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a7/
%G ru
%F TIMM_2005_11_2_a7
V. I. Ivanov; D. V. Gorbachev; Yu. D. Rudomazina. Some extremal problems for periodic functions with conditions on their values and Fourier coefficients. Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 92-111. http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a7/

[1] Stechkin S. B., “Odna ekstremalnaya zadacha dlya trigonometricheskikh ryadov s neotritsatelnymi koeffitsientami”, Acta Math. Acad. Scient. Hungaricae, 23:3–4 (1972), 289–291 | Zbl

[2] Stechkin S. B., Izbr. tr. Matematika, Nauka, M., 1998 | MR

[3] Gorbachev D. V., Manoshina A. S., “Ekstremalnaya zadacha Turana dlya periodicheskikh funktsii s malym nositelem”, Trudy 4-i Mezhdunar. konf. “Sovremennye problemy teorii chisel i ee prilozheniya” (Tula, 2001), Chebyshevskii sb., 2, Izd-vo TGPU, 2001, Tula, 31–40 | MR

[4] Manoshina A. S., “Ekstremalnaya zadacha Turana dlya funktsii s malym nositelem”, Izv. TulGU. Ser. Matematika, 6:3 (2000), 113–116

[5] Gorbachev D. V., “Ekstremalnaya zadacha dlya periodicheskikh funktsii s nositelem v share”, Mat. zametki, 69:3 (2001), 346–352 | MR | Zbl

[6] Gorbachev D. V. Manoshina A. S., “Ekstremalnaya zadacha Turana dlya periodicheskikh funktsii s malym nositelem i ee prilozheniya”, Mat. zametki, 76:5 (2004), 688–700 | MR | Zbl

[7] Arestov V. V., Berdysheva E. E., “Turán's problem for positive definite functions with supports in a hexagon”, Proc. Steklov Inst. Math., 1 Suppl, 2001, S20–S29 | MR | Zbl

[8] Arestov V. V., Berdysheva E. E., “The Turán problem for a class of polytopes”, East J. Approx., 8:3 (2002), 381–388 | MR | Zbl

[9] Arestov V. V., Berdysheva E. E., Berens H., “On pointwise Turán's problem for positive definite functions”, East J. Approx., 9:1 (2003), 31–42 | MR | Zbl

[10] Kolountzakis M., Rěvěsz S. G., “On a problem of Turán about positive definite functions”, Proc. Amer. Math. Soc., 131 (2003), 3423–3430 | DOI | MR | Zbl

[11] Kolountzakis M., Rěvěsz S. G., Turán's extremal problem for positive definite functions on groups, Rezhim dostupa: , 2003, 10 Dec. arXiv:math.CA/0312218v1

[12] Delsart F., Algebraicheskii podkhod k skhemam otnoshenii teorii kodirovaniya, Mir, M., 1976 | MR

[13] Sidelnikov V. M., “Ob ekstremalnykh mnogochlenakh, ispolzuemykh pri otsenke moschnosti koda”, Probl. peredachi informatsii, 16:3 (1980), 17–30 | MR

[14] Levenshtein V. I., “Granitsy dlya upakovok metricheskikh prostranstv i nekotorye ikh prilozheniya”, Probl. kibernetiki, 40 (1983), 43–110 | MR

[15] Arestov V. V., Babenko A. G., “O skheme Delsarta otsenki kontaktnykh chisel”, Trudy MIAN, 219, 1997, 44–73 | MR | Zbl

[16] Gorbachev D. V., “Ekstremalnaya zadacha dlya tselykh funktsii eksponentsialnogo sfericheskogo tipa, svyazannaya s otsenkoi Levenshteina plotnosti upakovki $\mathbb R^n$ sharami”, Izvestiya TulGU. Ser. Matematika, 6:1 (2000), 71–78 | MR

[17] Cohn H., Elkies N., “New upper bounds on sphere packings, I”, Ann. Math., 157 (2003), 689–714 | DOI | MR | Zbl

[18] Cohn H., Kumar A., “The densest lattice in twenty-four dimensions”, Electron. Res. Announc. Amer. Math. Soc., 10 (2004), 58–67 | DOI | MR | Zbl

[19] Babenko A. G., “Neravenstvo Dzheksona dlya srednekvadratichnykh priblizhenii periodicheskikh funktsii trigonometricheskimi polinomami na ravnomernoi setke”, Mat. zametki, 43:4 (1988), 460–473 | MR

[20] Ivanov V. I., Smirnov O. I., “Konstanty Dzheksona v prostranstve $\l_2(\mathbb Z_2^n)$”, Trudy MIAN, 219, 1997, 183–210 | MR | Zbl

[21] Fejér L., Gesammelte Arbeiten, Bd. 1, Akad. Kiado, Budapest, 1970 | Zbl

[22] Polia G., Sege G., Zadachi i teoremy iz analiza, T. 2, Nauka, M., 1978

[23] Chandrasekkharan K., Vvedenie v analiticheskuyu teoriyu chisel, Mir, M., 1974 | MR

[24] Turetskii A. Kh., Teoriya interpolirovaniya v zadachakh, Vysh. shk., Minsk, 1968

[25] Montgomery H. L., Ten lectures on the interface between analytic number theory and harmonic analysis, Amer. Math. Soc., Providence, RI, 1994 | MR