An integral problem of Konyagin and the $(C,L)$-constants of Nikol'skii
Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 72-91
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An extremal problem concerning functions with small supports posed by Konyagin in connection with number-theoretic applications is considered. It is shown to be related to extremal problems on the best Nikol'skii constants in the inequalities for $C$- and $L$-norms of trigonometric polynomials and entire functions of exponential type. New estimates for constants in these problems are obtained.
@article{TIMM_2005_11_2_a6,
     author = {D. V. Gorbachev},
     title = {An integral problem of {Konyagin} and the $(C,L)$-constants of {Nikol'skii}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {72--91},
     year = {2005},
     volume = {11},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a6/}
}
TY  - JOUR
AU  - D. V. Gorbachev
TI  - An integral problem of Konyagin and the $(C,L)$-constants of Nikol'skii
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2005
SP  - 72
EP  - 91
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a6/
LA  - ru
ID  - TIMM_2005_11_2_a6
ER  - 
%0 Journal Article
%A D. V. Gorbachev
%T An integral problem of Konyagin and the $(C,L)$-constants of Nikol'skii
%J Trudy Instituta matematiki i mehaniki
%D 2005
%P 72-91
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a6/
%G ru
%F TIMM_2005_11_2_a6
D. V. Gorbachev. An integral problem of Konyagin and the $(C,L)$-constants of Nikol'skii. Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 72-91. http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a6/

[1] M. Abramovits, I. Stigan (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR

[2] Andreev N. N., Konyagin S. V., Popov A. Yu., “Ekstremalnye zadachi dlya funktsii s malym nositelem”, Mat. zametki, 60:3 (1996), 323–332 | MR | Zbl

[3] Konyagin S., Shparlinski I., Character sums with exponential functions and their applications, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[4] Gorbachev D. V., Manoshina A. S., “Ekstremalnaya zadacha Turana dlya periodicheskikh funktsii s malym nositelem i ee prilozheniya”, Mat. zametki, 76:5 (2004), 688–700 | MR | Zbl

[5] Gorbachev D. V., “Ob odnoi ekstremalnoi zadache dlya periodicheskikh funktsii s malym nositelem”, Mat. zametki, 73:5 (2003), 773–778 | MR | Zbl

[6] Nikolskii S. M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[7] Milovanović G. V., Mitrinović D. S., Rassias Th. M., Topics in polynomials: extremal problems, inequalities, zeros, World Sci. Publ. Co., Singapore etc., 1994 | MR

[8] Taikov L. V., “Odin krug ekstremalnykh zadach dlya trigonometricheskikh polinomov”, Uspekhi mat. nauk, 20:3(123) (1965), 205–211 | MR

[9] Taikov L. V., “O nailuchshem priblizhenii yader Dirikhle”, Mat. zametki, 53:6 (1993), 116–121 | MR

[10] Babenko V., Kofanov V., Pichugov S., “Comparison of Rearrangement and Kolmogorov–Nagy Type Inequalities for Periodic Functions”, Approx. Theory: A volume dedicated to Blagovest Sendov, ed. B. Bojanov, DARBA, Sofia, 2002, 24–53 | MR | Zbl

[11] Akhiezer N. I., Lektsii po teorii approksimatsii, Nauka, M., 1965 | MR

[12] Gorbachev D. V., “Usilenie nizhnei otsenki Taikova v neravenstve mezhdu $C$- i $L$-normami dlya trigonometricheskikh polinomov”, Mat. zametki, 74:1 (2003), 132–134 | MR | Zbl

[13] Stein I., Veis G., Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl