An integral problem of Konyagin and the $(C,L)$-constants of Nikol'skii
Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 72-91
Voir la notice de l'article provenant de la source Math-Net.Ru
An extremal problem concerning functions with small supports posed by Konyagin in connection with
number-theoretic applications is considered. It is shown to be related to extremal problems on the best
Nikol'skii constants in the inequalities for $C$- and $L$-norms of trigonometric polynomials and entire functions
of exponential type. New estimates for constants in these problems are obtained.
@article{TIMM_2005_11_2_a6,
author = {D. V. Gorbachev},
title = {An integral problem of {Konyagin} and the $(C,L)$-constants of {Nikol'skii}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {72--91},
publisher = {mathdoc},
volume = {11},
number = {2},
year = {2005},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a6/}
}
D. V. Gorbachev. An integral problem of Konyagin and the $(C,L)$-constants of Nikol'skii. Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 72-91. http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a6/