Markov–Nikol'skii inequality for the spaces $L_q$, $L_0$ on a segment
Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 60-71
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For algebraic polynomials of degree $n$ on a segment, an exact constant is found in the Markov–Nikol'skii inequality $\|P^{(k)}\|_q\le M_{q,0}(n,k)\|P\|_0$, $1\le q\le\infty$.
@article{TIMM_2005_11_2_a5,
     author = {P. Yu. Glazyrina},
     title = {Markov{\textendash}Nikol'skii inequality for the spaces $L_q$, $L_0$ on a~segment},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {60--71},
     year = {2005},
     volume = {11},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a5/}
}
TY  - JOUR
AU  - P. Yu. Glazyrina
TI  - Markov–Nikol'skii inequality for the spaces $L_q$, $L_0$ on a segment
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2005
SP  - 60
EP  - 71
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a5/
LA  - ru
ID  - TIMM_2005_11_2_a5
ER  - 
%0 Journal Article
%A P. Yu. Glazyrina
%T Markov–Nikol'skii inequality for the spaces $L_q$, $L_0$ on a segment
%J Trudy Instituta matematiki i mehaniki
%D 2005
%P 60-71
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a5/
%G ru
%F TIMM_2005_11_2_a5
P. Yu. Glazyrina. Markov–Nikol'skii inequality for the spaces $L_q$, $L_0$ on a segment. Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 60-71. http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a5/

[1] Arestov V. V., “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. mat., 45:1 (1981), 3–22 | MR | Zbl

[2] Arestov V. V., “Integralnye neravenstva dlya algebraicheskikh mnogochlenov na edinichnoi okruzhnosti”, Mat. zametki, 48:4 (1990), 7–18 | MR

[3] Bari N. K., “Obobschenie neravenstv S. N. Bernshteina i A. A. Markova”, Izv. AN SSSR. Ser. mat., 18:2 (1954), 159–176 | MR | Zbl

[4] Daugavet I. K., Rafalson S. Z., “Nekotorye neravenstva tipa Markova–Nikolskogo dlya algebraicheskikh mnogochlenov”, Vestn. LGU. Ser. Matematika, mekhanika i astronomiya, 1:1 (1972), 15–25 | MR | Zbl

[5] Chebyshev P. L., Poln. sobr. soch., T. 2, Izd-vo AN SSSR, M., 1947

[6] Glazyrina P. Yu., “Neravenstvo bratev Markovykh v prostranstve $L_0$”, Algoritmicheskii analiz neustoichivykh zadach, Tez. dokl. Vseross. konf. (2–6 fevr. 2004), Ekaterinburg, 2004, 38–39

[7] Ivanov V. I., “Nekotorye neravenstva dlya trigonometricheskikh mnogochlenov i ikh proizvodnykh v raznykh metrikakh”, Mat. zametki, 18:4 (1975), 489–498 | Zbl

[8] Ivanov V. I., “Nekotorye ekstremalnye svoistva polinomov i obratnye neravenstva teorii priblizheniya”, Tr. MIAN, 145, 1980, 79–110 | Zbl

[9] Konyagin S. V., “Otsenki proizvodnykh ot mnogochlenov”, Dokl. AN SSSR, 243:5 (1978), 1116–1118 | MR | Zbl

[10] Markov A. A., “Ob odnom voprose D. I. Mendeleeva”, Zap. Imp. Akad. nauk (Sankt-Peterburg), 62 (1889), 1–24

[11] Markov V. A., O funktsiyakh, naimenee uklonyayuschikhsya ot nulya v dannom promezhutke, SPb., 1892 | Zbl

[12] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, GIFML, M., 1960

[13] Bojanov B. D., “An extension of the Markov inequality”, J. Approx. Theory, 35:2 (1982), 181–190 | DOI | MR | Zbl

[14] Dörfler P., “New inequalities of Markov type”, SIAM J. Math. Anal., 18:2 (1987), 490–494 | DOI | MR | Zbl

[15] Glazyrina P. Yu., “Limiting case of the inequality in various metrics for algebraic polynomials on an interval”, East J. Approx., 9:1 (2003), 1–19 | MR | Zbl

[16] Hardy G. H., Littlewood J. E. and Polya G., Inequalities, Cambridge, 1934 | MR

[17] Hille E., Szegő G., Tamarkin J. D., “On some Generalizations of a Theorem of A. Markoff”, Duke Math. J., 3 (1937), 729–739 | DOI | MR

[18] Korkin A. N., Zolotarev E. I., “Sur un certain minimum”, Nouv. Ann. Math. Sér. 2, 1873, no. 12, 337–355

[19] Labelle G., “Concerning polynomials on the unit interval”, Proc. Amer. Math. Soc., 20 (1969), 321–326 | DOI | MR | Zbl

[20] Milovanović G. V., “Various extremal problems of Markov's type for algebraic polynomials”, Facta Univ. Ser. Math. Inform., 1987, no. 2, 7–28 | MR | Zbl