Some properties of Fourier series of functions with bounded variation. II
Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 168-174
Voir la notice du chapitre de livre
We investigate ways to divide the Fourier series of a function of bounded variation into blocks such that the sum of the series consisting of the absolute values of the blocks is square integrable on the period.
@article{TIMM_2005_11_2_a11,
author = {S. A. Telyakovskii},
title = {Some properties of {Fourier} series of functions with bounded {variation.~II}},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {168--174},
year = {2005},
volume = {11},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a11/}
}
S. A. Telyakovskii. Some properties of Fourier series of functions with bounded variation. II. Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 168-174. http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a11/
[1] Telyakovskii S. A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 219, 1997, 378–386 | MR
[2] Telyakovskii S. A., “O ravnomernoi skhodimosti ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 232, 2001, 318–326 | MR
[3] Zigmund A., Trigonometricheskie ryady, T. I, Mir, M., 1965 | MR
[4] Telyakovskii S. A., “Some properties of Fourier series of functions with bounded variation”, East J. Approx., 10:1–2 (2004), 215–218 | MR | Zbl
[5] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR
[6] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948