Some properties of Fourier series of functions with bounded variation. II
Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 168-174
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We investigate ways to divide the Fourier series of a function of bounded variation into blocks such that the sum of the series consisting of the absolute values of the blocks is square integrable on the period.
@article{TIMM_2005_11_2_a11,
     author = {S. A. Telyakovskii},
     title = {Some properties of {Fourier} series of functions with bounded {variation.~II}},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {168--174},
     year = {2005},
     volume = {11},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a11/}
}
TY  - JOUR
AU  - S. A. Telyakovskii
TI  - Some properties of Fourier series of functions with bounded variation. II
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2005
SP  - 168
EP  - 174
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a11/
LA  - ru
ID  - TIMM_2005_11_2_a11
ER  - 
%0 Journal Article
%A S. A. Telyakovskii
%T Some properties of Fourier series of functions with bounded variation. II
%J Trudy Instituta matematiki i mehaniki
%D 2005
%P 168-174
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a11/
%G ru
%F TIMM_2005_11_2_a11
S. A. Telyakovskii. Some properties of Fourier series of functions with bounded variation. II. Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 168-174. http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a11/

[1] Telyakovskii S. A., “O chastnykh summakh ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 219, 1997, 378–386 | MR

[2] Telyakovskii S. A., “O ravnomernoi skhodimosti ryadov Fure funktsii ogranichennoi variatsii”, Tr. MIAN, 232, 2001, 318–326 | MR

[3] Zigmund A., Trigonometricheskie ryady, T. I, Mir, M., 1965 | MR

[4] Telyakovskii S. A., “Some properties of Fourier series of functions with bounded variation”, East J. Approx., 10:1–2 (2004), 215–218 | MR | Zbl

[5] Zigmund A., Trigonometricheskie ryady, T. 2, Mir, M., 1965 | MR

[6] Khardi G. G., Littlvud Dzh. E., Polia G., Neravenstva, IL, M., 1948