Voir la notice du chapitre de livre
@article{TIMM_2005_11_2_a10,
author = {Yu. N. Subbotin and N. I. Chernykh},
title = {Construction of wavelets in $W_2^m(\mathbb R)$ and their approximative properties in different metrics},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {131--167},
year = {2005},
volume = {11},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a10/}
}
TY - JOUR AU - Yu. N. Subbotin AU - N. I. Chernykh TI - Construction of wavelets in $W_2^m(\mathbb R)$ and their approximative properties in different metrics JO - Trudy Instituta matematiki i mehaniki PY - 2005 SP - 131 EP - 167 VL - 11 IS - 2 UR - http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a10/ LA - ru ID - TIMM_2005_11_2_a10 ER -
%0 Journal Article %A Yu. N. Subbotin %A N. I. Chernykh %T Construction of wavelets in $W_2^m(\mathbb R)$ and their approximative properties in different metrics %J Trudy Instituta matematiki i mehaniki %D 2005 %P 131-167 %V 11 %N 2 %U http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a10/ %G ru %F TIMM_2005_11_2_a10
Yu. N. Subbotin; N. I. Chernykh. Construction of wavelets in $W_2^m(\mathbb R)$ and their approximative properties in different metrics. Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 131-167. http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a10/
[1] Bastin F., Laubin P., “Compactly supported wavelets in Sobolev spaces”, Duke Math. J., 87:3 (1997), 481–508 | DOI | MR | Zbl
[2] Chernykh N. I., Subbotin Yu. N., “Wavelets Which are Orthonormal with Respect to an Inner Product in the Sobolev Space $W_2^m$ of Periodic Functions”, Proc. Steklov Inst. Math., Suppl. 1, 2001, S71–S84 | MR | Zbl
[3] Chernykh N. I., Subbotin Yu. N., “Approximating properties of the fWm $\widetilde W_2^m$-orthogonal wavelets”, East J. Approx., 10:1–2 (2004), 219–230 | MR | Zbl
[4] Subbotin Yu. N., Chernykh N. I., “Novye tipy periodicheskikh vspleskov”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy shk.-konf., posvyasch. 130-letiyu so dnya rozhdeniya D. F. Egorova (Kazan, 13–18 sentyabrya 1999 g.), Kazan. mat. o-vo, Kazan, 1999, 209–212
[5] Subbotin Yu. N., Chernykh N. I., “Konstruktsiya vspleskov v $W_2^m(\mathbb R)$ i ikh approksimativnye svoistva v raznykh metrikakh”, Dokl. RAN, 399:1 (2004), 23–25 | MR
[6] Alberg Dzh. Kh., Nilson E. N., Uolsh Dzh. L., Teoriya splainov i ee prilozheniya, Mir, M., 1972, 248 pp. | MR | Zbl
[7] Schumaker L. L., Spline Functions: Basic Theory, Wiley, New York, 1981, 553 pp. | MR | Zbl
[8] Micchelli C. A., “Cardinal $\mathcal L$-splines”, Studies in spline functions and approximation theory, Acad. Press. INC, New-York, 1976, 203–250 | MR
[9] Privalov I. I., Vvedenie v teoriyu funktsii kompleksnogo peremennogo, Fizmatgiz, M., 1960, 244 pp.
[10] Berezin I. S., Zhidkov N. P., Metody vychislenii, T. 1, Fizmatgiz, M., 1959, 464 pp. | Zbl
[11] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Mat. zametki, 21:2 (1977), 161–172 | MR | Zbl
[12] Scherer K., Schumaker L. L., “A dual basis for $L$-splines and Applications”, J. Approx. Theory, 29:2 (1980), 151–169 | DOI | MR | Zbl
[13] Shevaldin V. T., “Ob odnoi zadache ekstremalnoi interpolyatsii”, Mat. zametki, 29:4 (1981), 603–622 | MR | Zbl
[14] Schumaker L. L., “On recursions for generalized splines”, J. Approx. Theory, 36:1 (1982), 16–31 | DOI | MR | Zbl