Construction of wavelets in $W_2^m(\mathbb R)$ and their approximative properties in different metrics
Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 131-167

Voir la notice de l'article provenant de la source Math-Net.Ru

Wavelet bases in the Sobolev space $W_2^m(\mathbb R)$ on the axis $\mathbb R=(-\infty,\infty)$ orthogonal with respect to any given inner product generating one of equivalent norms in $W_2^m(\mathbb R)$ are constructed. The rate of convergence of series in these bases for smooth functions from $L_q(\mathbb R)$ ($2\le q\le\infty$) is investigated.
@article{TIMM_2005_11_2_a10,
     author = {Yu. N. Subbotin and N. I. Chernykh},
     title = {Construction of wavelets in $W_2^m(\mathbb R)$ and their approximative properties in different metrics},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {131--167},
     publisher = {mathdoc},
     volume = {11},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a10/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - Construction of wavelets in $W_2^m(\mathbb R)$ and their approximative properties in different metrics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2005
SP  - 131
EP  - 167
VL  - 11
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a10/
LA  - ru
ID  - TIMM_2005_11_2_a10
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A N. I. Chernykh
%T Construction of wavelets in $W_2^m(\mathbb R)$ and their approximative properties in different metrics
%J Trudy Instituta matematiki i mehaniki
%D 2005
%P 131-167
%V 11
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a10/
%G ru
%F TIMM_2005_11_2_a10
Yu. N. Subbotin; N. I. Chernykh. Construction of wavelets in $W_2^m(\mathbb R)$ and their approximative properties in different metrics. Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 131-167. http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a10/