Construction of wavelets in $W_2^m(\mathbb R)$ and their approximative properties in different metrics
Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 131-167
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Wavelet bases in the Sobolev space $W_2^m(\mathbb R)$ on the axis $\mathbb R=(-\infty,\infty)$ orthogonal with respect to any given inner product generating one of equivalent norms in $W_2^m(\mathbb R)$ are constructed. The rate of convergence of series in these bases for smooth functions from $L_q(\mathbb R)$ ($2\le q\le\infty$) is investigated.
@article{TIMM_2005_11_2_a10,
     author = {Yu. N. Subbotin and N. I. Chernykh},
     title = {Construction of wavelets in $W_2^m(\mathbb R)$ and their approximative properties in different metrics},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {131--167},
     year = {2005},
     volume = {11},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a10/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - Construction of wavelets in $W_2^m(\mathbb R)$ and their approximative properties in different metrics
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2005
SP  - 131
EP  - 167
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a10/
LA  - ru
ID  - TIMM_2005_11_2_a10
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A N. I. Chernykh
%T Construction of wavelets in $W_2^m(\mathbb R)$ and their approximative properties in different metrics
%J Trudy Instituta matematiki i mehaniki
%D 2005
%P 131-167
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a10/
%G ru
%F TIMM_2005_11_2_a10
Yu. N. Subbotin; N. I. Chernykh. Construction of wavelets in $W_2^m(\mathbb R)$ and their approximative properties in different metrics. Trudy Instituta matematiki i mehaniki, Function theory, Tome 11 (2005) no. 2, pp. 131-167. http://geodesic.mathdoc.fr/item/TIMM_2005_11_2_a10/

[1] Bastin F., Laubin P., “Compactly supported wavelets in Sobolev spaces”, Duke Math. J., 87:3 (1997), 481–508 | DOI | MR | Zbl

[2] Chernykh N. I., Subbotin Yu. N., “Wavelets Which are Orthonormal with Respect to an Inner Product in the Sobolev Space $W_2^m$ of Periodic Functions”, Proc. Steklov Inst. Math., Suppl. 1, 2001, S71–S84 | MR | Zbl

[3] Chernykh N. I., Subbotin Yu. N., “Approximating properties of the fWm $\widetilde W_2^m$-orthogonal wavelets”, East J. Approx., 10:1–2 (2004), 219–230 | MR | Zbl

[4] Subbotin Yu. N., Chernykh N. I., “Novye tipy periodicheskikh vspleskov”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy shk.-konf., posvyasch. 130-letiyu so dnya rozhdeniya D. F. Egorova (Kazan, 13–18 sentyabrya 1999 g.), Kazan. mat. o-vo, Kazan, 1999, 209–212

[5] Subbotin Yu. N., Chernykh N. I., “Konstruktsiya vspleskov v $W_2^m(\mathbb R)$ i ikh approksimativnye svoistva v raznykh metrikakh”, Dokl. RAN, 399:1 (2004), 23–25 | MR

[6] Alberg Dzh. Kh., Nilson E. N., Uolsh Dzh. L., Teoriya splainov i ee prilozheniya, Mir, M., 1972, 248 pp. | MR | Zbl

[7] Schumaker L. L., Spline Functions: Basic Theory, Wiley, New York, 1981, 553 pp. | MR | Zbl

[8] Micchelli C. A., “Cardinal $\mathcal L$-splines”, Studies in spline functions and approximation theory, Acad. Press. INC, New-York, 1976, 203–250 | MR

[9] Privalov I. I., Vvedenie v teoriyu funktsii kompleksnogo peremennogo, Fizmatgiz, M., 1960, 244 pp.

[10] Berezin I. S., Zhidkov N. P., Metody vychislenii, T. 1, Fizmatgiz, M., 1959, 464 pp. | Zbl

[11] Sharma A., Tsimbalario I., “Nekotorye lineinye differentsialnye operatory i obobschennye raznosti”, Mat. zametki, 21:2 (1977), 161–172 | MR | Zbl

[12] Scherer K., Schumaker L. L., “A dual basis for $L$-splines and Applications”, J. Approx. Theory, 29:2 (1980), 151–169 | DOI | MR | Zbl

[13] Shevaldin V. T., “Ob odnoi zadache ekstremalnoi interpolyatsii”, Mat. zametki, 29:4 (1981), 603–622 | MR | Zbl

[14] Schumaker L. L., “On recursions for generalized splines”, J. Approx. Theory, 36:1 (1982), 16–31 | DOI | MR | Zbl