Characteristic equation in the problem of asymptotic stability in periodic systems with aftereffect
Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 85-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In linear periodic systems with aftereffect, a motion is asymptotically stable, if all eigenvalues of the monodromy operator are less than one in absolute value. Procedures of constructing the characteristic equation for the monodromy operator are connected with finite-dimensional approximations of this operator. The characteristic equation on the complex plane is given by an entire function. For nuclear operators in a separable Hilbert space, this function is uniformly approximable by polynomials in any bounded closed region of the complex plane. Conditions for the nuclearity of the monodromy operator, its conjugate operator, and the regularized monodromy operator are obtained in this work.
@article{TIMM_2005_11_1_a8,
     author = {Yu. F. Dolgii},
     title = {Characteristic equation in the problem of asymptotic stability in periodic systems with aftereffect},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {85--96},
     year = {2005},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a8/}
}
TY  - JOUR
AU  - Yu. F. Dolgii
TI  - Characteristic equation in the problem of asymptotic stability in periodic systems with aftereffect
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2005
SP  - 85
EP  - 96
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a8/
LA  - ru
ID  - TIMM_2005_11_1_a8
ER  - 
%0 Journal Article
%A Yu. F. Dolgii
%T Characteristic equation in the problem of asymptotic stability in periodic systems with aftereffect
%J Trudy Instituta matematiki i mehaniki
%D 2005
%P 85-96
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a8/
%G ru
%F TIMM_2005_11_1_a8
Yu. F. Dolgii. Characteristic equation in the problem of asymptotic stability in periodic systems with aftereffect. Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 85-96. http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a8/

[1] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR

[2] Shimanov S. N., “K teorii lineinykh differentsialnykh uravnenii s posledeistviem”, Differents. uravneniya, 1:1 (1965), 102–116 | Zbl

[3] Privalov I. I., Vvedenie v teoriyu funktsii kompleksnykh peremennykh, Fizmatgiz, M., 1960

[4] Zverkin A. M., “K teorii differentsialno-raznostnykh uravnenii s zapazdyvaniyami, soizmerimymi s periodom koeffitsientov”, Differents. uravneniya, 24:9 (1988), 1481–1492 | MR | Zbl

[5] Bellman R., Kuk K. L., Differentsialno-raznostnye uravneniya, Mir, M., 1967 | MR | Zbl

[6] Rozenvasser E. N., Pokazateli Lyapunova v teorii lineinykh sistem upravleniya, Nauka, M., 1977 | MR | Zbl

[7] Shilman S. V., Metod proizvodyaschikh funktsii v teorii dinamicheskikh sistem, Nauka, M., 1973 | MR

[8] Gasilov G. L., “O kharakteristicheskom uravnenii sistemy lineinykh differentsialnykh uravnenii s periodicheskimi koeffitsientami i zapazdyvaniem”, Izvestiya vuzov. Matematika, 1972, no. 4, 60–66 | MR | Zbl

[9] Dolgii Yu. F., Ustoichivost periodicheskikh differentsialno-raznostnykh uravnenii, UrGU, Ekaterinburg, 1986

[10] Krasovskii N. N., “Ob approksimatsii odnoi zadachi analiticheskogo konstruirovaniya regulyatorov v sisteme s zapazdyvaniem”, Prikl. matematika i mekhanika, 28:4 (1964), 716–724 | MR

[11] Kurzhanskii A. B., “K approksimatsii lineinykh differentsialnykh uravnenii s zapazdyvaniem”, Differents. uravneniya, 3:12 (1967), 2094–2107

[12] Dolgii Yu. F., Sazhina S. D., “Otsenka eksponentsialnoi ustoichivosti sistem s zapazdyvaniem metodom approksimiruyuschikh sistem”, Differents. uravneniya, 21:12 (1985), 2046–2052 | MR

[13] Dolgii Yu. F., “Predstavlenie operatora monodromii v vide summy konechnomernogo i volterrova operatorov”, Dokl. RAN, 334:2 (1994), 138–140 | MR

[14] Dolgii Yu. F., “Konechnomernye approksimatsii operatora monodromii dlya periodicheskikh sistem differentsialnykh uravnenii s zapazdyvaniyami”, Funktsionalno-differentsialnye uravneniya. Vestnik PGTU, 2002, 118–130

[15] Dolgii Yu. F., “Kharakteristicheskoe uravnenie v zadache ustoichivosti periodicheskikh sistem s posledeistviem”, Izv. Ural. gos. un-ta, 1998, no. 10, 34–43, Matematika i mekhanika. Vyp. 1 | MR | Zbl

[16] Pich A., Operatornye idealy, Mir, M., 1982 | MR

[17] Cooke K. L., Wiener J., “Retarded differential equations with piecewise constant delays”, J. Math. Anal. and Appl., 99 (1984), 265–297 | DOI | MR | Zbl

[18] Dolgii Yu. F., Tarasyan V. S., “Usloviya konechnomernosti operatora monodromii dlya periodicheskikh sistem s posledeistviem”, Izv. vuzov. Matematika, 2003, no. 4, 27–39 | MR | Zbl

[19] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR

[20] Zabreiko P. P., Koshelev A. I., Krasnoselskii M. A. i dr., Integralnye uravneniya, Nauka, M., 1968 | MR

[21] Radon I., “O lineinykh funktsionalnykh preobrazovaniyakh i funktsionalnykh uravneniyakh”, Uspekhi mat. nauk, 1936, no. 1, 200–227

[22] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR