Optimal inputs in guaranteed identification problems
Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 74-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The problem of optimal choice of inputs for identifying control system parameters by measurement results is considered. A priori information is restricted by the knowledge of admissible limits of the variation of uncertain parameters and measurement errors. There is no statistical information; the identification problem is investigated within the framework of the minimax (guaranteed) approach. The optimal choice of inputs must provide the best quality of identification; the integral of the information function of the system is considered as an optimality criterion.
@article{TIMM_2005_11_1_a7,
     author = {M. I. Gusev},
     title = {Optimal inputs in guaranteed identification problems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {74--84},
     year = {2005},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a7/}
}
TY  - JOUR
AU  - M. I. Gusev
TI  - Optimal inputs in guaranteed identification problems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2005
SP  - 74
EP  - 84
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a7/
LA  - ru
ID  - TIMM_2005_11_1_a7
ER  - 
%0 Journal Article
%A M. I. Gusev
%T Optimal inputs in guaranteed identification problems
%J Trudy Instituta matematiki i mehaniki
%D 2005
%P 74-84
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a7/
%G ru
%F TIMM_2005_11_1_a7
M. I. Gusev. Optimal inputs in guaranteed identification problems. Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 74-84. http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a7/

[1] Mehra R. K., “Optimal inputs signals for parameter estimation in dynamic systems – Survey and new results”, IEEE Trans. on Automat. Control, 19:6 (1974), 753–768 | DOI | MR | Zbl

[2] Krasovskii N. N., “K teorii upravlyaemosti i nablyudaemosti lineinykh dinamicheskikh sistem”, Prikl. matematika i mekhanika, 28:1 (1964), 3–14 | MR

[3] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968 | MR

[4] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977 | MR | Zbl

[Schweppe] Schweppe F. C., Uncertain Dynamic Systems, Prentice Hall, Englewood Cliffs, NJ, 1973

[6] Kurzhanskii A. B., “Zadacha identifikatsii – teoriya garantirovannykh otsenok”, Avtomatika i telemekhanika, 1991, no. 4, 3–26 | MR

[7] Gusev M. I., “Planirovanie eksperimenta v zadachakh garantirovannogo otsenivaniya i identifikatsii”, Otsenivanie i identifikatsiya neopredelennykh sistem, Sb. tr. IMM UrO RAN, 1, Ekaterinburg, 1992, 50–82; Деп. в ВИНИТИ 26.05.92. No 1754-В92

[8] Kurzhanskii A. B., Pschenichnyi B. N., and Pokotilo V. G., “Optimal inputs for guaranteed identification”, Problems of control and information theory, 20:1 (1991), 13–23 | MR

[9] Pokotilo V. G., “Optimizatsiya apriornykh nablyudenii”, Dokl. AN SSSR, 317:2 (1991), 312–315 | MR | Zbl

[10] Gusev M. I., “O zadache optimizatsii izmepenii v usloviyakh neopredelennosti”, Evolyutsionnye sistemy v zadachakh otsenivaniya, Izd-vo UNTs AN SSSR, Svepdlovsk, 1985, 21–30 | MR

[11] Veres S. M., Norton J. P., “Identification of Nonlinear State-Space Models by Deterministic Search”, Bounding Approaches to System Identification, eds. M. Milanese et al., Plenum Press, New York, 1996, 317–332

[12] Kumkov S. I., Patsko V. S., Pyatko S. G., Fedotov A. A., “Informatsionnye mnozhestva v zadache nablyudeniya za dvizheniem samoleta”, Trudy IMM UrO RAN, 6, no. 2, 2000, 413–434 | MR

[13] Baras J. S., Kurzhanskii A. B., “Nonlinear filtering: the set-membership (bounding) and the $H_{\infty}$ techniques”, Proc. 3th IFAC Sym. on Nonlinear Control Systems Design, Pergamon Press, Oxford, 1995, 409–418

[14] Kurzhanski A. B., Vályi I., Ellipsoidal Calculus for Estimation and Control, Birkhäuser, Boston, 1997, 321 pp. | MR

[15] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976 | Zbl

[16] Li E. B., Markus L., Osnovy teorii optimalnogo upravleniya, Nauka, M., 1972, 574 pp. | MR