A problem of the sequential approach of a nonlinear object to two moving points
Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 43-52
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A problem of the fastest sequential approach of a nonlinear controlled object to two moving points is studied. A system of nonlinear differential equations describing a simplest model of the motion of an aircraft (car) in the horizontal plane is used. The structure of optimal trajectories is determined and an algorithm of their construction is suggested.
@article{TIMM_2005_11_1_a4,
     author = {Yu. I. Berdyshev},
     title = {A~problem of the sequential approach of a~nonlinear object to two moving points},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {43--52},
     year = {2005},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a4/}
}
TY  - JOUR
AU  - Yu. I. Berdyshev
TI  - A problem of the sequential approach of a nonlinear object to two moving points
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2005
SP  - 43
EP  - 52
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a4/
LA  - ru
ID  - TIMM_2005_11_1_a4
ER  - 
%0 Journal Article
%A Yu. I. Berdyshev
%T A problem of the sequential approach of a nonlinear object to two moving points
%J Trudy Instituta matematiki i mehaniki
%D 2005
%P 43-52
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a4/
%G ru
%F TIMM_2005_11_1_a4
Yu. I. Berdyshev. A problem of the sequential approach of a nonlinear object to two moving points. Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 43-52. http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a4/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Fizmatgiz, M., 1961, 384 pp.

[2] Berdyshev Yu. I., “Zadacha posledovatelnogo obkhoda nelineinym upravlyaemym ob'ektom sovokupnosti gladkikh mnogoobrazii”, Differents. uravneniya, 38:11 (2002), 1451–1461 | MR | Zbl

[3] Berdyshev Yu. I., “Ob odnoi zadache posledovatelnogo sblizheniya nelineinoi sistemy tretego poryadka s gruppoi dvizhuschikhsya tochek”, Prikl. matematika i mekhanika, 66:5 (2002), 742–752 | MR | Zbl

[4] Aizeks R., Differentsialnye igry, Mir, M., 1967, 497 pp. | MR

[5] Berdyshev Yu. I., “Sintez optimalnogo upravleniya dlya odnoi sistemy 3-go poryadka”, Voprosy analiza nelineinykh sistem avtomaticheskogo upravleniya, Tr. IMM UNTs AN SSSR, 12, Sverdlovsk, 1973, 91–101

[6] Patsko V. S., Pyatko S. G., Fedotov A. A., “Trekhmernoe mnozhestvo dostizhimosti nelineinoi upravlyaemoi sistemy”, Izvestiya AN. Teoriya i sistemy upravleniya, 2003, no. 3, 8–11 | MR

[7] Berdyshev Yu. I., “Sintez optimalnogo po bystrodeistviyu upravleniya dlya odnoi nelineinoi sistemy chetvertogo poryadka”, Prikl. matematika i mekhanika, 39:6 (1975), 985–994 | MR | Zbl

[8] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[9] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[10] Kurzhanskii A. B., Osipov Yu. S., “K zadache ob upravlenii s ogranichennymi fazovymi koordinatami”, Prikl. matematika i mekhanika, 32:2 (1968), 194–203 | MR

[11] Kurzhanskii A. B., Osipov Yu. S., “K zadache ob upravlenii pri stesnennykh ogranicheniyakh”, Prikl. matematika i mekhanika, 33:4 (1969), 705–719 | MR

[12] Subbotin A. I., “Ob upravlenii dvizheniem kvazilineinoi sistemoi”, Differents. uravneniya, 3:3 (1967), 1113–1118 | MR | Zbl

[13] Berdyshev Yu. I., Chentsov A. G., O nekotorykh zadachakh posledovatelnoi optimizatsii upravlyaemykh sistem, Dep. v VINITI 05.01.83. 109–83 Dep., Sverdlovsk, 1983, 98 pp.

[14] Berdyshev Yu. I., Chentsov A. G., “Optimizatsiya vzveshennogo kriteriya v odnoi zadache upravleniya”, Kibernetika, 1986, no. 1, 59–64 | MR | Zbl

[15] Berdyshev Yu. I., “Ob odnoi zadache posledovatelnoi optimizatsii bez dekompozitsii vo vremeni”, Kibernetika, 1987, no. 4, 32–35 | MR | Zbl

[16] Morina S. I., Chentsov A. G., “Diskretnoe upravlenie v zadachakh matematicheskogo programmirovaniya dvoistvennykh k zadacham posledovatelnoi optimizatsiya”, Avtomatika i telemekhanika, 1989, no. 3, 47–56 | MR | Zbl

[17] Berdyshev Yu. I., “Postroenie optimalnogo po bystrodeistviyu upravleniya nelineinoi sistemoi v zadache obkhoda gruppy tochek”, Kibernetika, 1991, no. 6, 173–175 | MR | Zbl

[18] Medvedev V. A., Rozova V. N., “Optimalnoe upravlenie stupenchatymi funktsiyami”, Avtomatika i telemekhanika, 1972, no. 3, 15–23 | Zbl

[19] Zakharov G. K., “Optimizatsiya stupenchatykh sistem upravleniya”, Avtomatika i telemekhanika, 1986, no. 8, 2–9

[20] Aschepkov L. T., Optimalnoe upravlenie razryvnymi sistemami, Nauka. Sib. otd-nie, Novosibirsk, 1987, 226 pp. | MR

[21] Troitskii V. A., “Variatsionnye zadachi optimizatsii protsessov upravleniya s funktsionalami, zavisyaschimi ot promezhutochnykh znachenii”, Prikl. matematika i mekhanika, 26:6 (1962), 1003–1011

[22] Krasovskii A. N., Krasovskii N. N., Control under lack of information, Birkhäuser, Boston etc., 1995, 320 pp. | MR

[23] Krasovskii N. N., Lukoyanov N. Yu., “Zadacha konfliktnogo upravleniya s nasledstvennoi informatsiei”, Prikl. matematika i mekhanika, 60:6 (1996), 885–900 | MR

[24] Berdyshev Yu. I., “O zadache obkhoda nelineinoi upravlyaemoi sistemoi tretego poryadka dvukh tochek”, Izvestiya Uralsk. gos. un-ta. Ser. matem. i mekh., 26:5 (2003), 24–33 | MR

[25] Berdyshev Yu. I., “Ob optimalnom po bystrodeistviyu posledovatelnom obkhode nelineinoi upravlyaemoi sistemoi tretego poryadka sovokupnosti tochek”, Izvestiya AN. Teoriya i sistemy upravleniya, 2002, no. 3, 41–48 | MR