Solvability conditions for nonlinear equations on a cone in a neighborhood of an anormal point
Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 26-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An operator equation described by a smooth nonlinear mapping acting in Banach spaces is considered. A solution of this equation that belongs to a given convex closed cone is sought. A condition of 2-regularity under which the equation in a neighborhood of a given point has a solution satisfying a linear-root estimate is presented. The introduced condition of 2-regularity is substantially weaker than the known Robinson condition, which is the first order regularity condition.
@article{TIMM_2005_11_1_a2,
     author = {A. V. Arutyunov},
     title = {Solvability conditions for nonlinear equations on a~cone in a~neighborhood of an anormal point},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {26--31},
     year = {2005},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a2/}
}
TY  - JOUR
AU  - A. V. Arutyunov
TI  - Solvability conditions for nonlinear equations on a cone in a neighborhood of an anormal point
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2005
SP  - 26
EP  - 31
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a2/
LA  - ru
ID  - TIMM_2005_11_1_a2
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%T Solvability conditions for nonlinear equations on a cone in a neighborhood of an anormal point
%J Trudy Instituta matematiki i mehaniki
%D 2005
%P 26-31
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a2/
%G ru
%F TIMM_2005_11_1_a2
A. V. Arutyunov. Solvability conditions for nonlinear equations on a cone in a neighborhood of an anormal point. Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 26-31. http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a2/

[1] Alekseev V. M., Tikhomirov V. M., Fomin S. V., Optimalnoe upravlenie, Nauka, M., 1979 | MR

[2] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR

[3] Banakh S., Teoriya lineinykh operatsii, RKhD, Moskva–Izhevsk, 2001

[4] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[5] Dmitruk A. V., Milyutin A. A., Osmolovskii N. P., “Teorema Lyusternika i teoriya ekstremuma”, Uspekhi mat. nauk, 35:6(216) (1980), 11–46 | MR | Zbl

[6] Robinson S., “Stability Theory for Systems of Inequalities, Part II: Differentiable Nonlinear Systems”, SIAM J. Num. Anal., 13:4 (1976), 497–513 | DOI | MR | Zbl

[7] Avakov E. R., “Teoremy ob otsenkakh v okrestnosti osoboi tochki otobrazheniya”, Matem. zametki, 47:5 (1990), 3–13 | MR | Zbl