Adaptive minimax control of a pursuit process with many pursuers in discrete dynamical systems
Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 225-240 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

An adaptive minimax control of a pursuit process with several controlled objects whose dynamics are described by discrete recursive vector equations is considered. It is assumed that the past realizations of the control signals of objects $I_i$ ($i=1,2,\dots,n$) controlled by $n$ pursuers and signals containing an incomplete information about an object II controlled by an evader are known. The sets of values of all a priori unknown parameters of the dynamical systems considered are convex polyhedra in the corresponding finite-dimensional vector spaces. Under these assumptions, the problem of adaptive minimax control of the pursuit process is stated and solved. A recursive procedure for organizing a minimax pursuit control in a certain class of feasible adaptive control strategies is suggested; each step of this procedure is based on implementation of a posteriori minimax nonlinear filtering and on solution of linear and convex programming problems. The results obtained can be used in computer modeling of real-life dynamical processes and in designing optimal navigational and control devices for various transportation systems.
@article{TIMM_2005_11_1_a19,
     author = {A. F. Shorikov},
     title = {Adaptive minimax control of a~pursuit process with many pursuers in discrete dynamical systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {225--240},
     year = {2005},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a19/}
}
TY  - JOUR
AU  - A. F. Shorikov
TI  - Adaptive minimax control of a pursuit process with many pursuers in discrete dynamical systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2005
SP  - 225
EP  - 240
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a19/
LA  - ru
ID  - TIMM_2005_11_1_a19
ER  - 
%0 Journal Article
%A A. F. Shorikov
%T Adaptive minimax control of a pursuit process with many pursuers in discrete dynamical systems
%J Trudy Instituta matematiki i mehaniki
%D 2005
%P 225-240
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a19/
%G ru
%F TIMM_2005_11_1_a19
A. F. Shorikov. Adaptive minimax control of a pursuit process with many pursuers in discrete dynamical systems. Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 225-240. http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a19/

[1] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968 | MR

[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[3] Kurzhanskii A. B., Upravlenie i nablyudenie v usloviyakh neopredelennosti, Nauka, M., 1977 | MR | Zbl

[4] Chernousko F. L., Melikyan A. A., Igrovye zadachi upravleniya i poiska, Nauka, M., 1978 | MR

[5] Shorikov A. F., “Minimaksnye filtry dlya otsenivaniya sostoyanii nelineinykh diskretnykh sistem”, Avtomatika i telemekhanika, 1991, no. 4, 112–122 | MR | Zbl

[6] Shorikov A. F., Minimaksnoe otsenivanie i upravlenie v diskretnykh dinamicheskikh sistemakh, Izd-vo Ural. un-ta, Ekaterinburg, 1997 | MR

[7] Shorikov A. F., “Algoritm adaptivnogo minimaksnogo upravleniya dlya protsessa presledovaniya-ukloneniya v diskretnykh dinamicheskikh sistemakh”, Tr. In-ta matematiki i mekhaniki UrO RAN, 6, no. 2, UrO RAN, Ekaterinburg, 2000, 515–535 | MR

[8] Grigorenko N. L., “Zadacha presledovaniya v differentsialnykh igrakh mnogikh lits”, Mat. sbornik, 135(177):1 (1988), 36–45 | MR | Zbl

[9] Petrov N. N., “Ob odnom klasse zadach gruppovogo presledovaniya s fazovymi ogranicheniyami”, Avtomatika i telemekhanika, 1994, no. 3, 42–49 | Zbl

[10] Tabak D., “Optimal Control of Nonlinear Discrete-Time Systems by Mathematical Programming”, J. Franklin Inst., 289:2 (1970), 111–119 | DOI | Zbl

[11] Tabak D., Kuo B. C., “Application of Mathematical Programming in the Design of Optimal Control Systems”, Intern. J. Control, 10 (1969), 545–552 | DOI | MR | Zbl

[12] Ho Y. C., Bryson A. E., Jr., and Baron S., “Differential Games and Optimal Pursuit-Evasion Strategies”, IEEE Trans. Automat. Control, 10:4 (1965), 385–389 | DOI | MR

[13] Rokafellar R., Vypuklyi analiz, Mir, M., 1973

[14] Bazara M., Shetti K., Nelineinoe programmirovanie. Teoriya i algoritmy, Mir, M., 1982 | MR | Zbl