Linear differential games with impulse control of players
Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 212-224 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider pursuit games in which players (the pursuer, evader or both players) use impulse controls, which is expressed in terms of the Dirac delta-function. We study linear dynamical system described by ordinary differential equations whose trajectories have discontinuities at discrete time instants. Such systems are a kind of hybrid ones. The research is based on the principal ideas of the decision function method. The following cases are considered successively: impulse control of the pursuer; impulse control of the evader; impulse control of both players. For each of the three cases, the problem of approach to a cylindrical terminal set is studied and sufficient solvability conditions for the above problem are obtained. The theoretical results are illustrated with an example of a pursuit game with simple motion.
@article{TIMM_2005_11_1_a18,
     author = {A. A. Chikrii and I. I. Matichin},
     title = {Linear differential games with impulse control of players},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {212--224},
     year = {2005},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a18/}
}
TY  - JOUR
AU  - A. A. Chikrii
AU  - I. I. Matichin
TI  - Linear differential games with impulse control of players
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2005
SP  - 212
EP  - 224
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a18/
LA  - ru
ID  - TIMM_2005_11_1_a18
ER  - 
%0 Journal Article
%A A. A. Chikrii
%A I. I. Matichin
%T Linear differential games with impulse control of players
%J Trudy Instituta matematiki i mehaniki
%D 2005
%P 212-224
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a18/
%G ru
%F TIMM_2005_11_1_a18
A. A. Chikrii; I. I. Matichin. Linear differential games with impulse control of players. Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 212-224. http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a18/

[1] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[2] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[3] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi, Nauka, M., 1985, 520 pp. | MR

[4] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 455 pp. | MR | Zbl

[5] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR

[6] Pontryagin L. S., Izbrannye nauchnye trudy, T. 2, Nauka, M., 1988, 576 pp. | MR

[7] Chikrii A. A., Konfliktno upravlyaemye protsessy, Nauk. dumka, Kiev, 1992, 384 pp.

[8] Mikusinskii Ya., Sikorskii R., Elementarnaya teoriya obobschennykh funktsii, Inostr. literatura, M., 1959, 79 pp.

[9] Filippov A. F., Differentsialnye uravneniya s razryvnoi pravoi chastyu, Nauka, M., 1985, 224 pp. | MR

[10] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 480 pp. | MR | Zbl

[11] Aumann R. J., “Integrals of set valued functions”, J. Math. Anal. Appl., 12 (1965), 1–12 | DOI | MR | Zbl

[12] Chikrii A. A., Eidelman S. D., “Obobschennye matrichnye funktsii Mittag-Lefflera v igrovykh zadachakh dlya evolyutsionnykh uravnenii drobnogo poryadka”, Kibernetika i sistemnyi analiz, 2000, no. 3, 3–32 | MR | Zbl