Stability of elastic systems under one-sided constraints on displacements
Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 177-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Problems of the stability of elastic systems under one-sided constraints on displacements are considered. These problems are reduced to finding bifurcation points of nonsmooth functionals or to determining parameters for which a certain variational problem with inequality constraints has a nontrivial solution. The stability problem for a rectangular plate whose flexures are confined from one side by rigid ribs is solved.
@article{TIMM_2005_11_1_a15,
     author = {V. N. Tarasov},
     title = {Stability of elastic systems under one-sided constraints on displacements},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {177--188},
     year = {2005},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a15/}
}
TY  - JOUR
AU  - V. N. Tarasov
TI  - Stability of elastic systems under one-sided constraints on displacements
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2005
SP  - 177
EP  - 188
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a15/
LA  - ru
ID  - TIMM_2005_11_1_a15
ER  - 
%0 Journal Article
%A V. N. Tarasov
%T Stability of elastic systems under one-sided constraints on displacements
%J Trudy Instituta matematiki i mehaniki
%D 2005
%P 177-188
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a15/
%G ru
%F TIMM_2005_11_1_a15
V. N. Tarasov. Stability of elastic systems under one-sided constraints on displacements. Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 177-188. http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a15/

[1] Alfutov N. A., Eremchiev A. N., “Vliyanie odnostoronnikh svyazei na ustoichivost obolochek pri osevom szhatii”, Raschety na prochnost, Mashinostroenie, M., 1989, 179–188

[2] Volmir A. S., Ustoichivost deformiruemykh sistem, Nauka, M., 1967

[3] Berger M., “Teoriya bifurkatsii v sluchae nelineinykh ellipticheskikh differentsialnykh uravnenii i sistem”, Teoriya vetvleniya i nelineinye zadachi na sobstvennye znacheniya, Mir, M., 1974, 71–128

[4] Kreps V. L., “O kvadratichnykh formakh, neotritsatelnykh na ortante”, Zhurn. vychisl. matematiki i mat. fiziki, 24:4 (1984), 497–503 | MR | Zbl

[5] Rapoport L. B., “Ustoichivost po Lyapunovu i znakoopredelennost kvadratichnoi formy na konuse”, Prikl. matematika i mekhanika, 50:4 (1986), 674–679 | MR | Zbl

[6] Sukharev A. G., “Globalnyi ekstremum i metody ego otyskaniya”, Matematicheskie metody v issledovanii operatsii, eds. N. N. Moiseev, P. S. Krasnoschekov, Izd-vo MGU, M., 1981, 4–37 | MR

[7] Arutyunov A. V, Tynyanskii N. T., “Znakoopredelennost kvadratichnykh form na konuse”, Uspekhi mat. nauk, 39:2(236) (1984), 133–134 | MR

[8] Gaddum J., “Linear inequalities and quadratic forms”, Pacific J. of Math., 8:3 (1958), 411–414 | MR | Zbl

[9] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR

[10] Fridman A.Z., “Ustoichivost zaschemlennykh po konturu pryamougolnykh plastin pod deistviem kombinirovannykh nagruzok”, Izv. AN SSSR. Mekhanika tverdogo tela, 1988, no. 5, 148–151

[11] Tarasov V. N., “K resheniyu zadach na sobstvennye znacheniya dlya polozhitelno odnorodnykh operatorov”, Trudy Vtoroi mezhdunarodnoi nauchno tekhnicheskoi konferentsii “Aktualnye problemy fundamentalnykh nauk”, T. 2. Chast 2, Tekhnosfera-Inform, M., 1994, v-8–v-11 | MR

[12] Tarasov V. N., Kholmogorov D. V., “Some problem of a stability and supercritical behaviour of elastic systems with one-sided connections”, Strength problems of deformed bodies, Trans. St. Petersbg. Acad. Sci. Strength Probl., 1, St. Petersburg, 1997, 175–188 | MR

[13] Feodosev V. I., Izbrannye zadachi po soprotivleniyu materialov, Nauka, M., 1967

[14] Mikhailovskii E. I., Tarasov V. N., Kholmogorov D. V., “Zakriticheskoe povedenie prodolno szhatogo sterzhnya s zhestkimi ogranicheniyami na progib”, Prikl. matematika i mekhanika, 49:1 (1985), 156–160