Construction of the solvability set in a problem of guiding an aircraft under wind disturbance
Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 149-159 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A nonlinear system of the fourth order is used for simplified description of the aircraft motion in the horizontal plane under wind disturbance. The aircraft control vector has two components constrained in modulus. One component affects the velocity value, and the second one defines variation of the direction of the velocity vector. The maximal value of the wind disturbance is given. The problem of guaranteed guidance of an aircraft from the initial position to a given terminal set at a fixed instant is considered. The motion is subject to the phase constraints at the intermediate instants. Based on the game theory, an algorithm for backward construction of the solvability set in a problem of guaranteed guidance is proposed. Numerical simulation results of the solvability set construction are described.
@article{TIMM_2005_11_1_a13,
     author = {S. I. Kumkov and V. S. Patsko and S. G. Pyatko and A. A. Fedotov},
     title = {Construction of the solvability set in a~problem of guiding an aircraft under wind disturbance},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {149--159},
     year = {2005},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a13/}
}
TY  - JOUR
AU  - S. I. Kumkov
AU  - V. S. Patsko
AU  - S. G. Pyatko
AU  - A. A. Fedotov
TI  - Construction of the solvability set in a problem of guiding an aircraft under wind disturbance
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2005
SP  - 149
EP  - 159
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a13/
LA  - ru
ID  - TIMM_2005_11_1_a13
ER  - 
%0 Journal Article
%A S. I. Kumkov
%A V. S. Patsko
%A S. G. Pyatko
%A A. A. Fedotov
%T Construction of the solvability set in a problem of guiding an aircraft under wind disturbance
%J Trudy Instituta matematiki i mehaniki
%D 2005
%P 149-159
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a13/
%G ru
%F TIMM_2005_11_1_a13
S. I. Kumkov; V. S. Patsko; S. G. Pyatko; A. A. Fedotov. Construction of the solvability set in a problem of guiding an aircraft under wind disturbance. Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 149-159. http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a13/

[1] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974 | MR | Zbl

[2] Krasovskii N. N., Subbotin A. I., Game-Theoretical Control Problems, Springer-Verlag, New York, 1988 | MR | Zbl

[3] Kumkov S. I., Patsko V. S., Pyatko S. G., Fedotov A. A., “Informatsionnye mnozhestva v zadache nablyudeniya za dvizheniem samoleta”, Tr. In-ta matematiki i mekhaniki UrO RAN, 6, no. 2, Ekaterinburg, 2000, 413–434 | MR

[4] Kumkov S. I., Patsko V. S., Pyatko S. G., Reshetov V. M., Fedotov A. A., “Informatsionnye mnozhestva v zadache nablyudeniya za dvizheniem samoleta v gorizontalnoi ploskosti”, Izv. RAN. Teoriya i sistemy upravleniya, 2003, no. 4, 51–61 | MR

[5] Anodina T. G., Mokshanov V. I., Modelirovanie protsessov v sisteme upravleniya vozdushnym dvizheniem, Radio i svyaz, M., 1993

[6] Khamza M. Kh., Kolas I., Rungalder V., “Optimalnye po bystrodeistviyu traektorii poleta v zadache presledovaniya”, Upravlenie kosmicheskimi apparatami i korablyami, Tr. Vtorogo Mezhdunar. simpoziuma IFAK po avtomaticheskomu upravleniyu v mirnom ispolzovanii kosmicheskogo prostranstva (Vena, Avstriya, sentyabr 1967), eds. B. N. Petrov, I. S. Ukolov, Nauka, M., 1971, 410–418

[7] Berdyshev Yu. I., “Sintez optimalnogo po bystrodeistviyu upravleniya dlya odnoi nelineinoi sistemy chetvertogo poryadka”, Prikl. matematika i mekhanika, 39:6 (1975), 985–994 | MR | Zbl

[8] Pontryagin L. S., “O lineinykh differentsialnykh igrakh. II”, Dokl. AN SSSR, 175:4 (1967), 764–766 | Zbl

[9] Nikolskii M. S., “Ob alternirovannom integrale L. S. Pontryagina”, Mat. sbornik, 116(158):1(9) (1981), 136–144 | MR

[10] Pshenichnyi B. N., Sagaidak M. I., “Differentsialnye igry s fiksirovannym vremenem”, Kibernetika, 6:1 (1971), 72–80 | MR

[11] Ushakov V. N., “K zadache postroeniya stabilnykh mostov v differentsialnoi igre sblizheniya-ukloneniya”, Izv. AN SSSR. Tekhn. kibernetika, 1980, no. 4, 29–36 | MR | Zbl

[12] A. I. Subbotin, V. S. Patsko (red.), Algoritmy i programmy resheniya lineinykh differentsialnykh igr, IMM UNTs AN SSSR, Sverdlovsk, 1984

[13] Tarasev A. M., Ushakov V. N., Khripunov A. P., “Ob odnom vychislitelnom algoritme resheniya igrovykh zadach upravleniya”, Prikl. matematika i mekhanika, 51:2 (1987), 216–222 | MR

[14] Grigorenko N. L., Kiselev Yu. N., Lagunova N. V., Silin D. B., Trinko N. G., “Metody resheniya differentsialnykh igr”, Mat. modelirovanie, 1993 (to appear)

[15] Kurzhanski A. B., Valyi I., Ellipsoidal Calculus for Estimation and Control, Birkhäuser, Boston, 1997 | MR

[16] Bardi M., Dolcetta I. C., Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Birkhäuser, Boston, 1997 | MR | Zbl

[17] Cardaliaguet P., Quincampoix M., Saint-Pierre P., “Set-Valued Numerical Analysis for Optimal Control and Differential Games”, Stochastic and differential games: Theory and numerical methods, Annals of the International Society of Dynamic Games, 4, eds. M. Bardi, T. E. Raghavan, T. Parthasarathy, 1999, 177–247 | MR | Zbl

[18] Polovinkin E. S., Ivanov G. E., Balashov M. V., Konstantinov R. V., Khorev A. V., “Algoritmy chislennogo resheniya lineinykh differentsialnykh igr”, Mat. sbornik, 192:10 (2001), 95–122 | MR | Zbl

[19] Pakhotinskikh V. Yu., Uspenskii A. A., Ushakov V. N., “Konstruirovanie stabilnykh mostov v differentsialnykh igrakh s fazovymi ogranicheniyami”, Prikl. matematika i mekhanika, 67:5 (2003), 771–783 | MR