The recovery of parameters of a Navier–Stokes system
Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 122-138
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study inverse problems about the recovery of a priori unknown parameters of a dynamic system described by a boundary value problem for a system of Navier–Stokes equations on the basis of some available information on the motion of the dynamic system (on the solution of a corresponding boundary value problem). The first of the problems under consideration is a retrospective inverse problem, consisting in the recovery of a priori unknown initial state of a dynamic system on the basis of its known final state. This problem, as many other similar problems, is ill-posed. For its solution, ideas of the so-called start control are involved. Realization of these ideas allows one to reduce the original ill-posed problem to a set of direct well-posed problems which are solved in the direct time under corresponding given initial conditions. We also consider various modifications and regularizations of the suggested method of solution of the problem based on some a priori information about a desired solution. The second of the problems under discussion is an inverse dynamic problem, consisting in the dynamic recovery of a priori unknown right side of the system which characterizes the density of external mass forces, by results of approximate measurements of current system states. This problem is also ill-posed. For its solution we suggest a dynamic positional regularizing algorithm physically realizable and able to work in a real-time mode. Construction of the algorithm is supported by structures and methods of the positional control theory and methods of regularization of ill-posed problems.
@article{TIMM_2005_11_1_a11,
     author = {A. I. Korotkii},
     title = {The recovery of parameters of {a~Navier{\textendash}Stokes} system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {122--138},
     year = {2005},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a11/}
}
TY  - JOUR
AU  - A. I. Korotkii
TI  - The recovery of parameters of a Navier–Stokes system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2005
SP  - 122
EP  - 138
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a11/
LA  - ru
ID  - TIMM_2005_11_1_a11
ER  - 
%0 Journal Article
%A A. I. Korotkii
%T The recovery of parameters of a Navier–Stokes system
%J Trudy Instituta matematiki i mehaniki
%D 2005
%P 122-138
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a11/
%G ru
%F TIMM_2005_11_1_a11
A. I. Korotkii. The recovery of parameters of a Navier–Stokes system. Trudy Instituta matematiki i mehaniki, Dynamical systems and control problems, Tome 11 (2005) no. 1, pp. 122-138. http://geodesic.mathdoc.fr/item/TIMM_2005_11_1_a11/

[1] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 476 pp. | MR

[2] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 456 pp. | MR | Zbl

[3] Lattes R., Lions Zh.-L., Metod kvaziobrascheniya i ego prilozheniya, Mir, M., 1970, 336 pp. | MR | Zbl

[4] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 418 pp. | MR

[5] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999, 351 pp.

[6] Ladyzhenskaya O. A., Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Gos. izd-vo fiz.-mat. literatury, M., 1961, 204 pp.

[7] Temam R., Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981, 408 pp. | MR | Zbl

[8] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972, 587 pp. | MR

[9] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979, 288 pp. | MR

[10] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978, 206 pp. | MR

[11] Lavrentev M. M., O nekotorykh nekorrektnykh zadachakh matematicheskoi fiziki, SO AN SSSR, Novosibirsk, 1962, 92 pp. | MR

[12] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002, 824 pp.

[13] Sea Zh., Optimizatsiya. Teoriya i algoritmy, Mir, M., 1973, 244 pp.

[14] Ioffe A. D., Tikhomirov V. M., Teoriya ekstremalnykh zadach, Nauka, M., 1974, 479 pp. | MR | Zbl

[15] Osipov Yu. S., Kryazhimskii A. V., Inverse problems of ordinary differential equations: dynamical solutions, Gordon and Breach, London, 1995, 586 pp. | MR | Zbl

[16] Osipov Yu. S., Vasilev F. P., Potapov M. M., Osnovy metoda dinamicheskoi regulyarizatsii., Izd-vo MGU, M., 1999, 237 pp.

[17] Kim A. V., Korotkii A. I., Osipov Yu. S., “Obratnye zadachi dinamiki parabolicheskikh sistem”, Prikl. matematika i mekhanika, 54:5 (1990), 754–759 | MR | Zbl

[18] Osipov Yu. S., Korotkii A. I., “Dinamicheskoe modelirovanie parametrov v giperbolicheskikh sistem”, Izvestiya AN SSSR. Tekh. kibernetika, 1991, no. 2, 154–164 | MR | Zbl

[19] Osipov Yu. S., Korotkii A. I., “On dynamical restoration of parameters of elliptic systems”, Ill-Posed Problems in Natural Sciences, ed. A. N. Tikhonov, VSP/TVP, Moscow, 1992, 108–117 | MR | Zbl

[20] Korotkii A. I., “Obratnye zadachi dinamiki upravlyaemykh sistem s raspredelennymi parametrami”, Izv. vuzov. Matematika, 1995, no. 11, 101–124 | MR

[21] Korotkii A. I., “O vosstanovlenii mestopolozheniya i intensivnosti istochnikov vozmuschenii”, Trudy IMM UrO RAN, 4, 1996, 217–226 | MR

[22] Korotkii A. I., Tsepelev I. A., “Verkhnyaya i nizhnyaya otsenki tochnosti v zadache dinamicheskogo opredeleniya parametrov”, Trudy IMM UrO RAN, 4, 1996, 227–238 | MR | Zbl

[23] Korotkii A. I., “Vosstanovlenie mnozhestva upravlenii po izmereniyam sostoyanii evolyutsionnoi sistemy”, Prikl. matematika i mekhanika, 61:3 (1997), 440–446 | MR

[24] Korotkii A. I., “Vosstanovlenie upravlenii i parametrov dinamicheskikh sistem pri nepolnoi informatsii”, Izv. vuzov. Matematika, 1998, no. 11, 47–55 | MR

[25] Korotkii A. I., “Vosstanovlenie upravlenii v usloviyakh nepolnoi informatsii o dinamike sistemy”, Prikl. matematika i mekhanika, 62:4 (1998), 566–575 | MR

[26] Vdovin A. Yu., “Otsenki pogreshnosti v zadache vosstanovleniya upravleniya”, Zadachi pozitsionnogo modelirovaniya, UNTs AN SSSR, Sverdlovsk, 1986, 3–11 | MR

[27] Maksimov V. I., “O modelirovanii upravlenii v parabolicheskikh variatsionnykh neravenstvakh”, Differents. uravneniya, 27:9 (1991), 1603–1609 | MR

[28] Korotkii A. I., “O dinamicheskoi rekonstruktsii upravlenii i parametrov v usloviyakh nepolnoi informatsii o sisteme”, Differents. uravneniya, 35:11 (1999), 1482–1486 | MR

[29] Korotkii A. I., “Dinamicheskoe vosstanovlenie upravlenii v usloviyakh neopredelennosti”, Izv. RAN. Teoriya i sistemy upravleniya, 2000, no. 1, 21–24 | MR

[30] Ismail-zade A. T., Korotkii A. I., Naimark B. M., Tsepelev I. A., “Trekhmernoe modelirovanie obratnoi retrospektivnoi zadachi teplovoi konvektsii”, Zhurn. vychisl. matem. i matematicheskoi fiziki, 43:4 (2003), 614–626 | MR | Zbl

[31] Korotkii A. I., Tsepelev I. A., “Solution of a retrospective inverse problem for one nonlinear evolutionary model”, Proc. of the Steklov Institute of Mathematics, 2, Suppl., 2003, 80–94 | MR

[32] Ismail-Zadeh A., Tsepelev I., Talbot C., Korotkii A., “Three-dimensional forward and backward modelling of diapirism: Numerical approach and its applicability to the evolution of salt structures in the Pricaspian basin”, Tectonophysics, 387:1–4 (2004), 81–103 | DOI

[33] Ismail-Zadeh A., Tsepelev I., Talbot C., Korotkii A., “Inverse Problem of Thermal Convection: Numerical Approach and Application to Mantle Plume Restoration”, Physics of the Earth and Planetary Interiors, 145 (2004), 99–114 | DOI