Generalized attraction sets and approximate solutions forming them
Trudy Instituta matematiki i mehaniki, Mathematical control theory, differential games, Tome 10 (2004) no. 2, pp. 178-196 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TIMM_2004_10_2_a11,
     author = {A. G. Chentsov},
     title = {Generalized attraction sets and approximate solutions forming them},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {178--196},
     year = {2004},
     volume = {10},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2004_10_2_a11/}
}
TY  - JOUR
AU  - A. G. Chentsov
TI  - Generalized attraction sets and approximate solutions forming them
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2004
SP  - 178
EP  - 196
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2004_10_2_a11/
LA  - ru
ID  - TIMM_2004_10_2_a11
ER  - 
%0 Journal Article
%A A. G. Chentsov
%T Generalized attraction sets and approximate solutions forming them
%J Trudy Instituta matematiki i mehaniki
%D 2004
%P 178-196
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2004_10_2_a11/
%G ru
%F TIMM_2004_10_2_a11
A. G. Chentsov. Generalized attraction sets and approximate solutions forming them. Trudy Instituta matematiki i mehaniki, Mathematical control theory, differential games, Tome 10 (2004) no. 2, pp. 178-196. http://geodesic.mathdoc.fr/item/TIMM_2004_10_2_a11/

[1] Varga Dzh., Optimalnoe upravlenie differentsialnymi i funktsionalnymi uravneniyami, Nauka, M., 1977, 624 pp. | MR

[2] Krasovskii N. N., Igrovye zadachi o vstreche dvizhenii, Nauka, M., 1970, 420 pp. | MR

[3] Krasovskii N. N., Teoriya upravleniya dvizheniem, Nauka, M., 1968, 475 pp. | MR

[4] Panasyuk A. I., Panasyuk V. I., Asimptoticheskaya magistralnaya optimizatsiya upravlyaemykh sistem, Nauka i tekhnika, Minsk, 1986, 296 pp. | MR

[5] Yang L., Lektsii po variatsionnomu ischisleniyu i teorii optimalnogo upravleniya, Mir, M., 1970, 488 pp. | MR

[6] Gamkrelidze R. V., Osnovy optimalnogo upravleniya, Izd-vo Tbil. un-ta, Tbilisi, 1977, 252 pp. | MR | Zbl

[7] Daffin R. Dzh., “Beskonechnye programmy”, Lineinye neravenstva i smezh. voprosy, M., 1959, 263–267

[8] Golshtein E. G., Teoriya dvoistvennosti v matematicheskom programmirovanii i ee prilozheniya, Nauka, M., 1971, 351 pp. | MR

[9] Krasovskii N. N., Subbotin A. I., Pozitsionnye differentsialnye igry, Nauka, M., 1974, 455 pp. | MR | Zbl

[10] Krasovskii N. N., Upravlenie dinamicheskoi sistemoi. Zadacha o minimume garantirovannogo rezultata, Nauka, M., 1985, 518 pp. | MR

[11] Subbotin A. I., Minimaksnye neravenstva i uravneniya Gamiltona–Yakobi, Nauka, M., 1991, 215 pp. | MR

[12] Subbotin A. I., Chentsov A. G., Optimizatsiya garantii v zadachakh upravleniya, Nauka, M., 1981, 288 pp. | MR

[13] Kelli Dzh. L., Obschaya topologiya, Nauka, M., 1981, 431 pp. | MR

[14] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR

[15] Kuratovskii K., Mostovskii A., Teoriya mnozhestv, Mir, M., 1970, 416 pp. | MR

[16] Burbaki N., Obschaya topologiya, Nauka, M., 1968, 272 pp. | MR

[17] Chentsov A. G., Finitely additive measures and relaxations of extremal problems, Plenum Publ. Co., New York etc., 1996, 244 pp. | MR | Zbl

[18] Chentsov A. G., Asymptotic attainability, Kluwer Acad. Publ., Dordrecht etc., 1997, 322 pp. | MR | Zbl

[19] Chentsov A. G., Morina S. I., Extensions and Relaxations, Kluwer Acad. Publ., Dordrecht etc., 2002, 408 pp. | MR | Zbl

[20] Chentsov A. G., “Finitely Additive Measures and Extension Constructions”, Atti Sem. Mat. Fis. Univ. Modena, 49:2 (2001), 531–545 | MR | Zbl

[21] Chentsov A. G., “K voprosu o postroenii korrektnykh rasshirenii v klasse konechno-additivnykh mer”, Izv. vuzov. Matematika, 2002, no. 2, 58–80 | MR | Zbl

[22] Chentsov A. G., “K voprosu o korrektnom rasshirenii nekotorykh neustoichivykh zadach upravleniya s integralnymi ogranicheniyami”, Izv. RAN. Ser. Mat., 63:3 (1999), 185–223 | MR | Zbl

[23] Chentsov A. G., “Some Questions of the Structure of Extensions in the Class of $(0,1)$-Measures”, Proc. Steklov Inst. Math., Suppl. 1, 2004, S36–S57 | MR

[24] Neve Zh., Matematicheskie osnovy teorii veroyatnostei, Mir, M., 1969, 309 pp. | MR | Zbl

[25] Chentsov A. G., “Dvuznachnye mery kak obobschennye elementy: problema rasshireniya sistemy uslovii”, Dokl. AN, 374:5 (2000), 611–614 | MR | Zbl

[26] Chentsov A. G., “Two-valued measures and zero-dimensional topologies”, Funct. Different. Equat., 9:1–2 (2002), 71–89 | MR | Zbl

[27] Bhaskara Rao K. P. S., Bhaskara Rao M., Theory of charges. A study of finitely additive measures, Acad. Press, New York, 1983, 253 pp. | MR | Zbl

[28] Bogachev V. I., Osnovy teorii mery, T. 1, NITs “Regulyar. i khaot. dinamika”, Moskva–Izhevsk, 2003, 543 pp.

[29] Aleksandryan R. A., Mirzakhanyan E. A., Obschaya topologiya, Vyssh. shk., M., 1979, 336 pp. | Zbl

[30] Bogachev V. I., Osnovy teorii mery, T. 2, NITs “Regulyar. i khaot. dinamika”, Moskva–Izhevsk, 2003, 575 pp.