On complete integral of quasi-linear second order differential equations with two independent variables
Trudy Instituta matematiki i mehaniki, Fluid dynamics, Tome 9 (2003) no. 2, pp. 95-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TIMM_2003_9_2_a8,
     author = {L. I. Rubina},
     title = {On complete integral of quasi-linear second order differential equations with two independent variables},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {95--104},
     year = {2003},
     volume = {9},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2003_9_2_a8/}
}
TY  - JOUR
AU  - L. I. Rubina
TI  - On complete integral of quasi-linear second order differential equations with two independent variables
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2003
SP  - 95
EP  - 104
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2003_9_2_a8/
LA  - ru
ID  - TIMM_2003_9_2_a8
ER  - 
%0 Journal Article
%A L. I. Rubina
%T On complete integral of quasi-linear second order differential equations with two independent variables
%J Trudy Instituta matematiki i mehaniki
%D 2003
%P 95-104
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2003_9_2_a8/
%G ru
%F TIMM_2003_9_2_a8
L. I. Rubina. On complete integral of quasi-linear second order differential equations with two independent variables. Trudy Instituta matematiki i mehaniki, Fluid dynamics, Tome 9 (2003) no. 2, pp. 95-104. http://geodesic.mathdoc.fr/item/TIMM_2003_9_2_a8/

[1] Sidorov A. F., Chislo i mysl, Vyp. 10, Znanie, M., 1987, 75–100 | MR

[2] Courant R., Hilbert D., Methods of mathematical physics, Vol. II, New York–London, 1962

[3] Smirnov V. I., Kurs vysshei matematiki, T. 4, Gos. izd-vo tekhn. -teoret. lit., M., 1957, 810 pp.

[4] Sidorov A. F., Izbrannye trudy. Matematika. Mekhanika, Fizmatgiz, M., 2001, 576 pp. | MR

[5] Galaktionov V. A., Posashkov S. A., “O novykh tochnykh resheniyakh parabolicheskikh uravnenii s kvadratichnymi nelineinostyami”, Zhurn. vychisl. matematiki i mat. fiziki, 29:4 (1989), 497–506 | MR

[6] Titov S. S., “Reshenie dvumernogo uravneniya filtratsii v vide mnogochlena po prostranstvennym peremennym”, Dinamika mnogofaznykh sred, ITPM SO AN SSSR, Novosibirsk, 1981, 291–293