A delay effect upon periodic oscillations in a conservative system
Trudy Instituta matematiki i mehaniki, Fluid dynamics, Tome 9 (2003) no. 2, pp. 21-40 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TIMM_2003_9_2_a2,
     author = {Yu. F. Dolgii and A. V. Zakharov},
     title = {A~delay effect upon periodic oscillations in a~conservative system},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {21--40},
     year = {2003},
     volume = {9},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2003_9_2_a2/}
}
TY  - JOUR
AU  - Yu. F. Dolgii
AU  - A. V. Zakharov
TI  - A delay effect upon periodic oscillations in a conservative system
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2003
SP  - 21
EP  - 40
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TIMM_2003_9_2_a2/
LA  - ru
ID  - TIMM_2003_9_2_a2
ER  - 
%0 Journal Article
%A Yu. F. Dolgii
%A A. V. Zakharov
%T A delay effect upon periodic oscillations in a conservative system
%J Trudy Instituta matematiki i mehaniki
%D 2003
%P 21-40
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/TIMM_2003_9_2_a2/
%G ru
%F TIMM_2003_9_2_a2
Yu. F. Dolgii; A. V. Zakharov. A delay effect upon periodic oscillations in a conservative system. Trudy Instituta matematiki i mehaniki, Fluid dynamics, Tome 9 (2003) no. 2, pp. 21-40. http://geodesic.mathdoc.fr/item/TIMM_2003_9_2_a2/

[1] Kaplan J. L., Yorke J. A., “Ordinary differential equations which yield periodic solutions of differential delay equations”, J. Math. Anal. Appl., 48:2 (1974), 317–324 | DOI | MR | Zbl

[2] Grafton R. B., “Periodic solutions of certain Lienard equations with delay”, J. Different. Equat., 11:3 (1972), 519–527 | DOI | MR | Zbl

[3] Dormayer P., “The stability of special symmetric solutions of $\dot x(t)=\alpha f(x(t- 1))$ with small amplitudes”, Nonlinear Analysis, Methods and Appl., 14:8 (1990), 701–715 | DOI | MR | Zbl

[4] Dolgii Yu. F., Nikolaev S. G., “Ustoichivost periodicheskogo resheniya nelineinogo differentsialnogo uravneniya s zapazdyvaniem”, Differents. uravneniya, 37:5 (2001), 592–600 | MR

[5] Moiseev N. N., Asimptoticheskie metody nelineinoi mekhaniki, Nauka, M., 1969, 380 pp. | MR | Zbl

[6] Elsgolts L. E., Norkin S. B., Vvedenie v teoriyu differentsialnykh uravnenii s otklonyayuschimsya argumentom, Nauka, M., 1971, 296 pp. | MR

[7] Shimanov S. N., “K teorii lineinykh differentsialnykh uravnenii s periodicheskimi koeffitsientami i zapazdyvaniem vremeni”, Prikl. matematika i mekhanika, 27:3 (1963), 450–458 | MR | Zbl

[8] Malkin I. G., Nekotorye zadachi teorii nelineinykh kolebanii, GITTL, M., 1956, 492 pp.

[9] Dolgii Yu. F., Shimanov S. N., “Suschestvovanie zony ustoichivosti dlya odnogo uravneniya s zapazdyvaniem”, Ustoichivost i nelineinye kolebaniya, UrGU, Sverdlovsk, 1988, 11–18

[10] Yakubovich V. A., Starzhinskii V. M., Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami i ikh prilozheniya, Nauka, M., 1972, 720 pp. | MR

[11] Vainberg M. M., Trenogii V. A., Teoriya vetvleniya reshenii nelineinykh uravnenii, Nauka, M., 1969, 528 pp. | MR | Zbl

[12] Kheil Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984, 421 pp. | MR