@article{TIMM_2003_9_1_a9,
author = {A. R. Danilin},
title = {Approximation of a~singularly perturbed elliptic optimal control problem with geometric constraints on the control},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {71--78},
year = {2003},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a9/}
}
TY - JOUR AU - A. R. Danilin TI - Approximation of a singularly perturbed elliptic optimal control problem with geometric constraints on the control JO - Trudy Instituta matematiki i mehaniki PY - 2003 SP - 71 EP - 78 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a9/ LA - ru ID - TIMM_2003_9_1_a9 ER -
%0 Journal Article %A A. R. Danilin %T Approximation of a singularly perturbed elliptic optimal control problem with geometric constraints on the control %J Trudy Instituta matematiki i mehaniki %D 2003 %P 71-78 %V 9 %N 1 %U http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a9/ %G ru %F TIMM_2003_9_1_a9
A. R. Danilin. Approximation of a singularly perturbed elliptic optimal control problem with geometric constraints on the control. Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 71-78. http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a9/
[1] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp. | MR
[2] Danilin A. R., “Approksimatsiya singulyarno vozmuschennoi ellipticheskoi zadachi optimalnogo upravleniya”, Mat. sb., 191:10 (2000), 3–12 | MR | Zbl
[3] Kapustin V. E., “Asimptotika ogranichennykh upravlenii v optimalnykh ellipticheskikh zadachakh”, Dokl. AN Ukrainy. Ser. Matematika, estestvoznanie, tekhn. nauki, 1992, no. 2, 70–74 | MR
[4] Ilin A. M., Lelikova E. F., “Metod sraschivaniya asimptoticheskikh razlozhenii dlya uravnenii $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ v pryamougolnike”, Mat. sb., 119(161):3(11) (1982), 307–324 | MR
[5] Lelikova E. F., “Metod sraschivaniya asimptoticheskikh razlozhenii dlya uravnenii $\varepsilon\Delta u-au_z=f$ v parallelepipede”, Differents. uravneniya, 14:9 (1978), 1638–1648 | MR | Zbl
[6] Kalyakin L. A., “Asimptotika resheniya sistemy dvukh lineinykh uravnenii MGD s singulyarnym vozmuscheniem. I. Standartnaya zadacha v ellipticheskom sloe”, Differents. uravneniya, 18:10 (1982), 1724–1738 | MR | Zbl
[7] Kufner A., Fuchik S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988, 304 pp. | MR
[8] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5(77) (1957), 3–122 | MR | Zbl
[9] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973, 272 pp. | MR
[10] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 334 pp. | MR
[11] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp. | Zbl
[12] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, izd-vo LGU, L., 1950, 255 pp. | MR