Approximation of a singularly perturbed elliptic optimal control problem with geometric constraints on the control
Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 71-78 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TIMM_2003_9_1_a9,
     author = {A. R. Danilin},
     title = {Approximation of a~singularly perturbed elliptic optimal control problem with geometric constraints on the control},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {71--78},
     year = {2003},
     volume = {9},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a9/}
}
TY  - JOUR
AU  - A. R. Danilin
TI  - Approximation of a singularly perturbed elliptic optimal control problem with geometric constraints on the control
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2003
SP  - 71
EP  - 78
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a9/
LA  - ru
ID  - TIMM_2003_9_1_a9
ER  - 
%0 Journal Article
%A A. R. Danilin
%T Approximation of a singularly perturbed elliptic optimal control problem with geometric constraints on the control
%J Trudy Instituta matematiki i mehaniki
%D 2003
%P 71-78
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a9/
%G ru
%F TIMM_2003_9_1_a9
A. R. Danilin. Approximation of a singularly perturbed elliptic optimal control problem with geometric constraints on the control. Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 71-78. http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a9/

[1] Lions Zh.-L., Optimalnoe upravlenie sistemami, opisyvaemymi uravneniyami s chastnymi proizvodnymi, Mir, M., 1972, 414 pp. | MR

[2] Danilin A. R., “Approksimatsiya singulyarno vozmuschennoi ellipticheskoi zadachi optimalnogo upravleniya”, Mat. sb., 191:10 (2000), 3–12 | MR | Zbl

[3] Kapustin V. E., “Asimptotika ogranichennykh upravlenii v optimalnykh ellipticheskikh zadachakh”, Dokl. AN Ukrainy. Ser. Matematika, estestvoznanie, tekhn. nauki, 1992, no. 2, 70–74 | MR

[4] Ilin A. M., Lelikova E. F., “Metod sraschivaniya asimptoticheskikh razlozhenii dlya uravnenii $\varepsilon\Delta u-a(x,y)u_y=f(x,y)$ v pryamougolnike”, Mat. sb., 119(161):3(11) (1982), 307–324 | MR

[5] Lelikova E. F., “Metod sraschivaniya asimptoticheskikh razlozhenii dlya uravnenii $\varepsilon\Delta u-au_z=f$ v parallelepipede”, Differents. uravneniya, 14:9 (1978), 1638–1648 | MR | Zbl

[6] Kalyakin L. A., “Asimptotika resheniya sistemy dvukh lineinykh uravnenii MGD s singulyarnym vozmuscheniem. I. Standartnaya zadacha v ellipticheskom sloe”, Differents. uravneniya, 18:10 (1982), 1724–1738 | MR | Zbl

[7] Kufner A., Fuchik S., Nelineinye differentsialnye uravneniya, Nauka, M., 1988, 304 pp. | MR

[8] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, Uspekhi mat. nauk, 12:5(77) (1957), 3–122 | MR | Zbl

[9] Vasileva A. B., Butuzov V. F., Asimptoticheskie razlozheniya reshenii singulyarno vozmuschennykh uravnenii, Nauka, M., 1973, 272 pp. | MR

[10] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 334 pp. | MR

[11] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp. | Zbl

[12] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, izd-vo LGU, L., 1950, 255 pp. | MR