Solutions of the extended nonlinear Schrödinger equation that oscillate at infinity
Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 183-195
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TIMM_2003_9_1_a20,
     author = {A. E. El'bert},
     title = {Solutions of the extended nonlinear {Schr\"odinger} equation that oscillate at infinity},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {183--195},
     year = {2003},
     volume = {9},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a20/}
}
TY  - JOUR
AU  - A. E. El'bert
TI  - Solutions of the extended nonlinear Schrödinger equation that oscillate at infinity
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2003
SP  - 183
EP  - 195
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a20/
LA  - ru
ID  - TIMM_2003_9_1_a20
ER  - 
%0 Journal Article
%A A. E. El'bert
%T Solutions of the extended nonlinear Schrödinger equation that oscillate at infinity
%J Trudy Instituta matematiki i mehaniki
%D 2003
%P 183-195
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a20/
%G ru
%F TIMM_2003_9_1_a20
A. E. El'bert. Solutions of the extended nonlinear Schrödinger equation that oscillate at infinity. Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 183-195. http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a20/

[1] Potasek M. J., Tabor M., “Exact solutions for an extended nonlinear Schrödinger equation”, Phys. Lett. A, 154:9 (1991), 449–452 | DOI | MR

[2] Agrawal G. P., Nonlinear Fiber Optics, Acad. Press, New York, 1995, 616 pp.

[3] Zaspel C. E., Mantha J. H., Rapoport Yu. G., Grimansky V. V., “Evolution of solitons in magnetic thin films”, Phys. Rev. B, 64 (2001), 064416 | DOI

[4] Hirota R., “Exact envelope-soliton solutions of a nonlinear wave equation”, J. Math. Phys., 14 (1973), 805–809 | DOI | MR | Zbl

[5] Sasa N., Satsuma J., “New-Type of Soliton Solutions for a Higher-Order Nonlinear Schrödinger Equation”, J. Phys. Soc. Japan, 60:2 (1991), 409–417 | DOI | MR | Zbl

[6] Mihalache D., Truta N., Crasovan L.-C., “Painlevé analysis and bright solitary waves of the higherorder nonlinear Schrödinger equation containing third-order dispersion and self-steepening term”, Phys. Rev. E, 56:1 (1997), 1064–1070 | DOI | MR

[7] Gromov E. M., Talanov V. I., “Nelineinaya dinamika korotkikh tsugov voln v dispergiruyuschikh sredakh”, Zhurn. eksperiment. i teoret. fiziki, 110:1 (1996), 137–149

[8] Karpman V. I., Rasmussen J. J., Shagalov A. G., “Dynamics of solitons and quasisolitons of cubic third-order nonlinear Schrödinger equation”, Phys. Rev. E, 64 (2001), 026614 | DOI

[9] Naife A. X., Metody vozmuschenii, Mir, M., 1976, 455 pp. | MR