Method of asymptotic partial decomposition of domain and partial homogenization
Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 137-142

Voir la notice de l'article provenant de la source Math-Net.Ru

Application of the method of asymptotic partial decomposition of domain to the following two singularly perturbed boundary value problems is considered. The first one is a boundary value problem for a Poisson equation on a narrow rectangle with the Dirichlet boundary conditions on its smaller sides and the Neumann conditions on the others. The second is a Dirichlet problem in a layer for elliptic operator with coefficients rapidly oscillating with respect to the cross variable.
@article{TIMM_2003_9_1_a16,
     author = {G. Panasenko},
     title = {Method of asymptotic partial decomposition of domain and partial homogenization},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {137--142},
     publisher = {mathdoc},
     volume = {9},
     number = {1},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a16/}
}
TY  - JOUR
AU  - G. Panasenko
TI  - Method of asymptotic partial decomposition of domain and partial homogenization
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2003
SP  - 137
EP  - 142
VL  - 9
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a16/
LA  - en
ID  - TIMM_2003_9_1_a16
ER  - 
%0 Journal Article
%A G. Panasenko
%T Method of asymptotic partial decomposition of domain and partial homogenization
%J Trudy Instituta matematiki i mehaniki
%D 2003
%P 137-142
%V 9
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a16/
%G en
%F TIMM_2003_9_1_a16
G. Panasenko. Method of asymptotic partial decomposition of domain and partial homogenization. Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 137-142. http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a16/