Method of asymptotic partial decomposition of domain and partial homogenization
Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 137-142
Voir la notice de l'article provenant de la source Math-Net.Ru
Application of the method of asymptotic partial decomposition of domain to the following two singularly
perturbed boundary value problems is considered. The first one is a boundary value problem for a Poisson
equation on a narrow rectangle with the Dirichlet boundary conditions on its smaller sides and the Neumann
conditions on the others. The second is a Dirichlet problem in a layer for elliptic operator with coefficients
rapidly oscillating with respect to the cross variable.
@article{TIMM_2003_9_1_a16,
author = {G. Panasenko},
title = {Method of asymptotic partial decomposition of domain and partial homogenization},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {137--142},
publisher = {mathdoc},
volume = {9},
number = {1},
year = {2003},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a16/}
}
TY - JOUR AU - G. Panasenko TI - Method of asymptotic partial decomposition of domain and partial homogenization JO - Trudy Instituta matematiki i mehaniki PY - 2003 SP - 137 EP - 142 VL - 9 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a16/ LA - en ID - TIMM_2003_9_1_a16 ER -
G. Panasenko. Method of asymptotic partial decomposition of domain and partial homogenization. Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 137-142. http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a16/