Method of asymptotic partial decomposition of domain and partial homogenization
Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 137-142 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Application of the method of asymptotic partial decomposition of domain to the following two singularly perturbed boundary value problems is considered. The first one is a boundary value problem for a Poisson equation on a narrow rectangle with the Dirichlet boundary conditions on its smaller sides and the Neumann conditions on the others. The second is a Dirichlet problem in a layer for elliptic operator with coefficients rapidly oscillating with respect to the cross variable.
@article{TIMM_2003_9_1_a16,
     author = {G. Panasenko},
     title = {Method of asymptotic partial decomposition of domain and partial homogenization},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {137--142},
     year = {2003},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a16/}
}
TY  - JOUR
AU  - G. Panasenko
TI  - Method of asymptotic partial decomposition of domain and partial homogenization
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2003
SP  - 137
EP  - 142
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a16/
LA  - en
ID  - TIMM_2003_9_1_a16
ER  - 
%0 Journal Article
%A G. Panasenko
%T Method of asymptotic partial decomposition of domain and partial homogenization
%J Trudy Instituta matematiki i mehaniki
%D 2003
%P 137-142
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a16/
%G en
%F TIMM_2003_9_1_a16
G. Panasenko. Method of asymptotic partial decomposition of domain and partial homogenization. Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 137-142. http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a16/

[1] Panasenko G. P., “Method of asymptotic partial decomposition of domain”, Math. Models and Methods Appl. Sci., 8:1 (1998), 139–156 | DOI | MR | Zbl

[2] Panasenko G. P., “Asymptotic partial decomposition of variational problems”, C. R. Acad. Sci. Paris. Sér. II, 327:11 (1999), 1185–1190 | Zbl

[3] Panasenko G. P., “Method of asymptotic partial decomposition of rod structures”, Intern. J. Computat. Civil and Structural Engineering (Begel House Publ.), 1:2 (2000), 57–70

[4] Blanc F., Gipouloux O., Panasenko G., Zine A. M., “Asymptotic Analysis and Partial Asymptotic Decomposition of the Domain for Stokes Equation in Tube Structure”, Math. Models and Methods Appl. Sci., 9:9 (1999), 1351–1378 | DOI | MR | Zbl

[5] Panasenko G. P., “Asymptotic expansion of the solution of Navier–Stokes equation in tube structure and partial asymptotic decomposition of the domain”, Appl. Anal. Intern. J., 76:3–4 (2000), 363–381 | DOI | MR | Zbl

[6] Panasenko G. P., “High order asymptotics of solutions of problems on the contact of periodic structures”, Math. Sb., 110(152):4(12) (1979), 505–538 | MR | Zbl

[7] Bakhvalov N. S., Panasenko G. P., Homogenization: Averaging processes in periodic media, Nauka, Moscow, 1984, 355 pp. | MR | Zbl

[8] Nazarov S. A., “Asymptotics of the solution of the Dirichlet problem for an equation with rapidly oscillating coefficients in rectangle”, Mat. Sb., 182:5 (1991), 692–722 | MR | Zbl

[9] Panasenko G. P., “Partial homogenization”, C. R. Mecanique, 330:1–6 (2002), 667–672 | DOI | Zbl

[10] Smyshlyaev V. P., Cherednichenko K. D., “On derivation of “strain gradient” effects in the overall behaviour of periodic heterogeneous media”, J. Mech. Phys. Solids, 48 (2000), 1325–1357 | DOI | MR | Zbl