Asymptotic solutions for Hartree equations and logarithmic obstructions for higher corrections of semiclassical approximation
Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 102-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{TIMM_2003_9_1_a12,
     author = {M. V. Karasev and A. V. Pereskokov},
     title = {Asymptotic solutions for {Hartree} equations and logarithmic obstructions for higher corrections of semiclassical approximation},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {102--106},
     year = {2003},
     volume = {9},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a12/}
}
TY  - JOUR
AU  - M. V. Karasev
AU  - A. V. Pereskokov
TI  - Asymptotic solutions for Hartree equations and logarithmic obstructions for higher corrections of semiclassical approximation
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2003
SP  - 102
EP  - 106
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a12/
LA  - ru
ID  - TIMM_2003_9_1_a12
ER  - 
%0 Journal Article
%A M. V. Karasev
%A A. V. Pereskokov
%T Asymptotic solutions for Hartree equations and logarithmic obstructions for higher corrections of semiclassical approximation
%J Trudy Instituta matematiki i mehaniki
%D 2003
%P 102-106
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a12/
%G ru
%F TIMM_2003_9_1_a12
M. V. Karasev; A. V. Pereskokov. Asymptotic solutions for Hartree equations and logarithmic obstructions for higher corrections of semiclassical approximation. Trudy Instituta matematiki i mehaniki, Asymptotic expansions, approximation theory, topology, Tome 9 (2003) no. 1, pp. 102-106. http://geodesic.mathdoc.fr/item/TIMM_2003_9_1_a12/

[1] Maslov V. P., Kompleksnye markovskie tsepi i kontinualnyi integral Feinmana, Nauka, M., 1976, 192 pp. | MR

[2] Maslov V. P., “Uravneniya samosoglasovannogo polya”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 11, 1978, 153–234 | Zbl

[3] Maslov V. P., Kompleksnyi metod VKB v nelineinykh uravneniyakh, Nauka, M., 1977, 384 pp. | MR

[4] Karasev M. V., Maslov V. P., “Algebry s obschimi perestanovochnymi sootnosheniyami i ikh prilozheniya. II. Operatornye unitarno-nelineinye uravneniya”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 13, 1979, 145–267 | MR | Zbl

[5] Karasev M. V., Pereskokov A. V., “Logarifmicheskie popravki v pravile kvantovaniya. Spektr polyarona”, Teoret. i mat. fizika, 97:1 (1993), 78–93 | MR

[6] Karasev M. V., Pereskokov A. V., “Asimptoticheskie resheniya uravnenii Khartri, sosredotochennye vblizi malomernykh podmnogoobrazii. I. Model s logarifmicheskoi osobennostyu”, Izv. RAN. Ser. mat., 65:5 (2001), 33–72 | MR | Zbl

[7] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989, 336 pp. | MR

[8] Karasev M. V., Pereskokov A. V., “Asimptoticheskie resheniya uravnenii Khartri, sosredotochennye vblizi malomernykh podmnogoobrazii. II. Lokalizatsiya v ploskikh diskakh”, Izv. RAN. Ser. mat., 65:6 (2001), 57–98 | MR | Zbl

[9] Pereskokov A. V., “Asimptoticheskie resheniya dvumernykh uravnenii tipa Khartri, lokalizovannye vblizi otrezkov”, Teoret. i mat. fizika, 131:3 (2002), 389–406 | MR | Zbl

[10] Uizem Dzh., Lineinye i nelineinye volny, Mir, M., 1977, 624 pp. | MR