Wavelets which are orthonormal with respect to an inner product in the Sobolev space $W_2^m$ of periodic functions
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Approximation theory. Asymptotical expansions, Tome 7 (2001) no. 1, pp. 217-230
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
@article{TIMM_2001_7_1_a15,
     author = {Yu. N. Subbotin and N. I. Chernykh},
     title = {Wavelets which are orthonormal with respect to an inner product in the {Sobolev} space $W_2^m$ of periodic functions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {217--230},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2001_7_1_a15/}
}
                      
                      
                    TY - JOUR AU - Yu. N. Subbotin AU - N. I. Chernykh TI - Wavelets which are orthonormal with respect to an inner product in the Sobolev space $W_2^m$ of periodic functions JO - Trudy Instituta matematiki i mehaniki PY - 2001 SP - 217 EP - 230 VL - 7 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_2001_7_1_a15/ LA - ru ID - TIMM_2001_7_1_a15 ER -
%0 Journal Article %A Yu. N. Subbotin %A N. I. Chernykh %T Wavelets which are orthonormal with respect to an inner product in the Sobolev space $W_2^m$ of periodic functions %J Trudy Instituta matematiki i mehaniki %D 2001 %P 217-230 %V 7 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_2001_7_1_a15/ %G ru %F TIMM_2001_7_1_a15
Yu. N. Subbotin; N. I. Chernykh. Wavelets which are orthonormal with respect to an inner product in the Sobolev space $W_2^m$ of periodic functions. Trudy Instituta matematiki i mehaniki, Approximation theory. Asymptotical expansions, Tome 7 (2001) no. 1, pp. 217-230. http://geodesic.mathdoc.fr/item/TIMM_2001_7_1_a15/