Wavelets which are orthonormal with respect to an inner product in the Sobolev space $W_2^m$ of periodic functions
Trudy Instituta matematiki i mehaniki, Approximation theory. Asymptotical expansions, Tome 7 (2001) no. 1, pp. 217-230

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{TIMM_2001_7_1_a15,
     author = {Yu. N. Subbotin and N. I. Chernykh},
     title = {Wavelets which are orthonormal with respect to an inner product in the {Sobolev} space $W_2^m$ of periodic functions},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {217--230},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_2001_7_1_a15/}
}
TY  - JOUR
AU  - Yu. N. Subbotin
AU  - N. I. Chernykh
TI  - Wavelets which are orthonormal with respect to an inner product in the Sobolev space $W_2^m$ of periodic functions
JO  - Trudy Instituta matematiki i mehaniki
PY  - 2001
SP  - 217
EP  - 230
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_2001_7_1_a15/
LA  - ru
ID  - TIMM_2001_7_1_a15
ER  - 
%0 Journal Article
%A Yu. N. Subbotin
%A N. I. Chernykh
%T Wavelets which are orthonormal with respect to an inner product in the Sobolev space $W_2^m$ of periodic functions
%J Trudy Instituta matematiki i mehaniki
%D 2001
%P 217-230
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_2001_7_1_a15/
%G ru
%F TIMM_2001_7_1_a15
Yu. N. Subbotin; N. I. Chernykh. Wavelets which are orthonormal with respect to an inner product in the Sobolev space $W_2^m$ of periodic functions. Trudy Instituta matematiki i mehaniki, Approximation theory. Asymptotical expansions, Tome 7 (2001) no. 1, pp. 217-230. http://geodesic.mathdoc.fr/item/TIMM_2001_7_1_a15/