The relative Jung constant in the space $l^n_{\infty}$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 97-103

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, in the space $l^n_{\infty}(n\geq 2)$, the relative Jung constant is equal to $(n-1)/n$
@article{TIMM_1998_5_a8,
     author = {S. V. Berdyshev},
     title = {The relative {Jung} constant in the space $l^n_{\infty}$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {97--103},
     publisher = {mathdoc},
     volume = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_1998_5_a8/}
}
TY  - JOUR
AU  - S. V. Berdyshev
TI  - The relative Jung constant in the space $l^n_{\infty}$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 1998
SP  - 97
EP  - 103
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_1998_5_a8/
LA  - ru
ID  - TIMM_1998_5_a8
ER  - 
%0 Journal Article
%A S. V. Berdyshev
%T The relative Jung constant in the space $l^n_{\infty}$
%J Trudy Instituta matematiki i mehaniki
%D 1998
%P 97-103
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_1998_5_a8/
%G ru
%F TIMM_1998_5_a8
S. V. Berdyshev. The relative Jung constant in the space $l^n_{\infty}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 97-103. http://geodesic.mathdoc.fr/item/TIMM_1998_5_a8/