The relative Jung constant in the space $l^n_{\infty}$
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 97-103
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that, in the space $l^n_{\infty}(n\geq 2)$, the relative Jung constant is equal to $(n-1)/n$
            
            
            
          
        
      @article{TIMM_1998_5_a8,
     author = {S. V. Berdyshev},
     title = {The relative {Jung} constant in the space $l^n_{\infty}$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {97--103},
     publisher = {mathdoc},
     volume = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_1998_5_a8/}
}
                      
                      
                    S. V. Berdyshev. The relative Jung constant in the space $l^n_{\infty}$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 97-103. http://geodesic.mathdoc.fr/item/TIMM_1998_5_a8/
                  
                