On the theory of $K$-analytic spaces
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 76-82
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Main results are the following. Let $X$ be a regular $K$-analytic space. Then (1) $X$ is hereditarily Lindelöf and hereditarily separable if and only if there does not exist any strongly increasing transfinite sequence $\{f_{\alpha}\colon\alpha\omega_1\}$ of functions of the first Baire class; (2) every directed acontinuous covering of $X$ by $G_\delta$ sets lias a countable subcovering.
			
            
            
            
          
        
      @article{TIMM_1998_5_a5,
     author = {E. G. Pytkeev},
     title = {On the theory of $K$-analytic spaces},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {76--82},
     publisher = {mathdoc},
     volume = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_1998_5_a5/}
}
                      
                      
                    E. G. Pytkeev. On the theory of $K$-analytic spaces. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 76-82. http://geodesic.mathdoc.fr/item/TIMM_1998_5_a5/
