The universal asymptotic realization of integral constraints and constructions of extension in the class of finitely additive measures
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 328-356
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem of keeping integral constraints is considered. The correct extension of the initial problem is constructed. The space of generalized elements consists of finitely additive measures of bounded variation which are weakly absolutely continuous with respect to a given measure space. The asymptotic equivalence of many variants of perturbations of integral constraints is discussed in terms of admissible sets. Applications to control problems are considered.
@article{TIMM_1998_5_a23,
author = {A. G. Chentsov},
title = {The universal asymptotic realization of integral constraints and constructions of extension in the class of finitely additive measures},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {328--356},
publisher = {mathdoc},
volume = {5},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_1998_5_a23/}
}
TY - JOUR AU - A. G. Chentsov TI - The universal asymptotic realization of integral constraints and constructions of extension in the class of finitely additive measures JO - Trudy Instituta matematiki i mehaniki PY - 1998 SP - 328 EP - 356 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_1998_5_a23/ LA - ru ID - TIMM_1998_5_a23 ER -
%0 Journal Article %A A. G. Chentsov %T The universal asymptotic realization of integral constraints and constructions of extension in the class of finitely additive measures %J Trudy Instituta matematiki i mehaniki %D 1998 %P 328-356 %V 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_1998_5_a23/ %G ru %F TIMM_1998_5_a23
A. G. Chentsov. The universal asymptotic realization of integral constraints and constructions of extension in the class of finitely additive measures. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 328-356. http://geodesic.mathdoc.fr/item/TIMM_1998_5_a23/