Hamilton–Jacobi–Bellman equation for a nonlinear impulse control problem
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 301-318 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A minimum problem for a functional of Bolza type along trajectories of nonlinear systems of differential equations governed by impulse controls with integral constraints is considered. A definition of a solution to such systems uses the closure of the set of absolutely continuous trajectories in the topology of pointwise convergence. It is shown that the value function of such a system is Lipschitz continuous and is a unique viscosity solution to a partial first order differential equation (a Hamilton–Jacobi–Bellman equation). Boundary conditions satisfied by the solution are obtained.
@article{TIMM_1998_5_a21,
     author = {A. V. Stefanova},
     title = {Hamilton{\textendash}Jacobi{\textendash}Bellman equation for a~nonlinear impulse control problem},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {301--318},
     year = {1998},
     volume = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_1998_5_a21/}
}
TY  - JOUR
AU  - A. V. Stefanova
TI  - Hamilton–Jacobi–Bellman equation for a nonlinear impulse control problem
JO  - Trudy Instituta matematiki i mehaniki
PY  - 1998
SP  - 301
EP  - 318
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_1998_5_a21/
LA  - ru
ID  - TIMM_1998_5_a21
ER  - 
%0 Journal Article
%A A. V. Stefanova
%T Hamilton–Jacobi–Bellman equation for a nonlinear impulse control problem
%J Trudy Instituta matematiki i mehaniki
%D 1998
%P 301-318
%V 5
%U http://geodesic.mathdoc.fr/item/TIMM_1998_5_a21/
%G ru
%F TIMM_1998_5_a21
A. V. Stefanova. Hamilton–Jacobi–Bellman equation for a nonlinear impulse control problem. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 301-318. http://geodesic.mathdoc.fr/item/TIMM_1998_5_a21/