Exact Jackson–Stechkin inequality in the space $L_2$ on hyperboloid
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 254-266 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The best mean square approximation of an arbitrary function on the hyperboloid $\mathbb H\subset\mathbb R^3$ by elements of the subspace of functions with the bounded spectrum in the sense of Mehler–Fock is estimated, from above by the $r$th $(r\geq 1)$ modulus of continuity generated by generalized shift (connected with the hyperboloid). The constant in the inequality is exact. Estimates for the least value of the argument of the modulus of continuity are also found when the exact Jackson–Stechkin constant is minimal.
@article{TIMM_1998_5_a18,
     author = {V. Yu. Popov},
     title = {Exact {Jackson{\textendash}Stechkin} inequality in the space $L_2$ on hyperboloid},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {254--266},
     year = {1998},
     volume = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_1998_5_a18/}
}
TY  - JOUR
AU  - V. Yu. Popov
TI  - Exact Jackson–Stechkin inequality in the space $L_2$ on hyperboloid
JO  - Trudy Instituta matematiki i mehaniki
PY  - 1998
SP  - 254
EP  - 266
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_1998_5_a18/
LA  - ru
ID  - TIMM_1998_5_a18
ER  - 
%0 Journal Article
%A V. Yu. Popov
%T Exact Jackson–Stechkin inequality in the space $L_2$ on hyperboloid
%J Trudy Instituta matematiki i mehaniki
%D 1998
%P 254-266
%V 5
%U http://geodesic.mathdoc.fr/item/TIMM_1998_5_a18/
%G ru
%F TIMM_1998_5_a18
V. Yu. Popov. Exact Jackson–Stechkin inequality in the space $L_2$ on hyperboloid. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 254-266. http://geodesic.mathdoc.fr/item/TIMM_1998_5_a18/