On Bernstein's theorem about a~sequence of best approximations in spaces $L^{\varphi}$.
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 227-246
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $T=(T,\Sigma,\mu)$ be a measure space, $\sigma$-algebra $\Sigma$ containing all the sets of measure zero and a set $E$ with $0\mu(E)\infty$; let $Y$ be an $F$-space with a quasinorm $|\cdot|_1$ nondecreasing along each ray emanating from the origin, $\varphi\colon[0,\infty)\to[0,\infty)$ be a continuous nondecreasing semiadditive function, $\varphi(\alpha)=0\Leftrightarrow\alpha=0$. Denote by $L^{\varphi}=L^{\varphi}(T,Y)$ the linear space of all measurable mappings $f\colon T\to Y$ with $|f|:=\int_T\varphi(|f(t)|_1)d\mu(t)\infty$. Let $L_n$ be asequence of finite-dimensional subspaces
of $L^{\varphi}$ such that $L_n\subset L_{n+1}$, $L_n\neq L_{n+1}$. The problem of existence of an element $f\in L^{\varphi}$ with the preassigned best approximations $a_n$ – distances from $f$ to $L_n$ – is considered.
@article{TIMM_1998_5_a16,
author = {A. I. Vasil'ev},
title = {On {Bernstein's} theorem about a~sequence of best approximations in spaces $L^{\varphi}$.},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {227--246},
publisher = {mathdoc},
volume = {5},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_1998_5_a16/}
}
TY - JOUR
AU - A. I. Vasil'ev
TI - On Bernstein's theorem about a~sequence of best approximations in spaces $L^{\varphi}$.
JO - Trudy Instituta matematiki i mehaniki
PY - 1998
SP - 227
EP - 246
VL - 5
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/TIMM_1998_5_a16/
LA - ru
ID - TIMM_1998_5_a16
ER -
A. I. Vasil'ev. On Bernstein's theorem about a~sequence of best approximations in spaces $L^{\varphi}$.. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 227-246. http://geodesic.mathdoc.fr/item/TIMM_1998_5_a16/