Approximative properties of sets with the convex complement
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 205-226

Voir la notice de l'article provenant de la source Math-Net.Ru

Approximative properties of sets with the convex complement are studied. In Hubert space, a closed set is constructed which has the convex bounded complement and whose distance function is Gâteaux differentiable at each point of the complement. Examples of closed antiproximinal sets with the convex bounded complement are given in the spaces $C(Q)$, $L_{\infty}[S,\Sigma,\mu]$, $L_1[s,\Sigma,\mu]$.
@article{TIMM_1998_5_a15,
     author = {V. S. Balaganskii},
     title = {Approximative properties of sets with the convex complement},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {205--226},
     publisher = {mathdoc},
     volume = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_1998_5_a15/}
}
TY  - JOUR
AU  - V. S. Balaganskii
TI  - Approximative properties of sets with the convex complement
JO  - Trudy Instituta matematiki i mehaniki
PY  - 1998
SP  - 205
EP  - 226
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_1998_5_a15/
LA  - ru
ID  - TIMM_1998_5_a15
ER  - 
%0 Journal Article
%A V. S. Balaganskii
%T Approximative properties of sets with the convex complement
%J Trudy Instituta matematiki i mehaniki
%D 1998
%P 205-226
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_1998_5_a15/
%G ru
%F TIMM_1998_5_a15
V. S. Balaganskii. Approximative properties of sets with the convex complement. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 205-226. http://geodesic.mathdoc.fr/item/TIMM_1998_5_a15/