Maclaurin's expansion of Szeg\"o's function whose weight is positive and satisfies Dini's condition, uniformly converges in the closed disc
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 199-204
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The theorem formulated in the title is proved by using methods of the theory of orthogonal polynomials.
			
            
            
            
          
        
      @article{TIMM_1998_5_a14,
     author = {V. M. Badkov},
     title = {Maclaurin's expansion of {Szeg\"o's} function whose weight is positive and satisfies {Dini's} condition, uniformly converges in the closed disc},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {199--204},
     publisher = {mathdoc},
     volume = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_1998_5_a14/}
}
                      
                      
                    TY - JOUR AU - V. M. Badkov TI - Maclaurin's expansion of Szeg\"o's function whose weight is positive and satisfies Dini's condition, uniformly converges in the closed disc JO - Trudy Instituta matematiki i mehaniki PY - 1998 SP - 199 EP - 204 VL - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TIMM_1998_5_a14/ LA - ru ID - TIMM_1998_5_a14 ER -
%0 Journal Article %A V. M. Badkov %T Maclaurin's expansion of Szeg\"o's function whose weight is positive and satisfies Dini's condition, uniformly converges in the closed disc %J Trudy Instituta matematiki i mehaniki %D 1998 %P 199-204 %V 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/TIMM_1998_5_a14/ %G ru %F TIMM_1998_5_a14
V. M. Badkov. Maclaurin's expansion of Szeg\"o's function whose weight is positive and satisfies Dini's condition, uniformly converges in the closed disc. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 199-204. http://geodesic.mathdoc.fr/item/TIMM_1998_5_a14/
