Exact Jackson--Stechkin inequality in the space $L^2(\mathbb R^m)$
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 183-198

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal K=\mathcal K_{\sigma}(\tau,r,m)$ be the exact constant in the Jackson–Stechkin inequality $$ E_{\sigma}(f)\leq\mathcal K\omega_{\tau}\biggl(f,\frac{\tau}{\sigma}\biggr),\quad f\in L^2(\mathbb R^m),\quad\sigma>0,\quad\tau>0,\quad r>0,\quad m=1,2,3,\dots, $$ where $E_{\sigma}(f)$ is the best $L^2$ approximation of a function $f$ by entire functions of exponential spherical type $\sigma$ and $\omega_r(f,t)$ is the $r$th spherical modulus of continuity of $f$. For $r\geq 1$, the following relations are proved: $$ \min_{t>0}\mathcal K_{\sigma}(t,r,m)=1;\quad\tau_{(m-2)/2}\leq\rm{int}\biggl\{\tau>0\colon\mathcal K_{\sigma}(\tau,r,m)=1\biggr\}\leq 2\tau_{(m-2)/2}, $$ where $\tau_{\nu}$ is the first positive zero of the Bessel function $J_{\nu}$.
@article{TIMM_1998_5_a13,
     author = {A. G. Babenko},
     title = {Exact {Jackson--Stechkin} inequality in the space $L^2(\mathbb R^m)$},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {183--198},
     publisher = {mathdoc},
     volume = {5},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_1998_5_a13/}
}
TY  - JOUR
AU  - A. G. Babenko
TI  - Exact Jackson--Stechkin inequality in the space $L^2(\mathbb R^m)$
JO  - Trudy Instituta matematiki i mehaniki
PY  - 1998
SP  - 183
EP  - 198
VL  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_1998_5_a13/
LA  - ru
ID  - TIMM_1998_5_a13
ER  - 
%0 Journal Article
%A A. G. Babenko
%T Exact Jackson--Stechkin inequality in the space $L^2(\mathbb R^m)$
%J Trudy Instituta matematiki i mehaniki
%D 1998
%P 183-198
%V 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_1998_5_a13/
%G ru
%F TIMM_1998_5_a13
A. G. Babenko. Exact Jackson--Stechkin inequality in the space $L^2(\mathbb R^m)$. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 183-198. http://geodesic.mathdoc.fr/item/TIMM_1998_5_a13/