Application of $i$-smooth analysis to construction of numerical methods for solving functional-differential equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 119-142
Voir la notice du chapitre de livre
New approach to constructing methods of Runge–Kutta type as well as multistep methods for solving functional-differential equations is proposed. Our methods (direct analogs of numerical methods for solving ordinary differential equations) are based on separation of finite-dimensional and infinite-dimensional (functional) components in the structure of the phase state. Determination of the approximation order of the methods essentially uses notions of $i$-smooth analysis.
@article{TIMM_1998_5_a10,
author = {A. V. Kim and V. G. Pimenov},
title = {Application of $i$-smooth analysis to construction of numerical methods for solving functional-differential equations},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {119--142},
year = {1998},
volume = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_1998_5_a10/}
}
TY - JOUR AU - A. V. Kim AU - V. G. Pimenov TI - Application of $i$-smooth analysis to construction of numerical methods for solving functional-differential equations JO - Trudy Instituta matematiki i mehaniki PY - 1998 SP - 119 EP - 142 VL - 5 UR - http://geodesic.mathdoc.fr/item/TIMM_1998_5_a10/ LA - ru ID - TIMM_1998_5_a10 ER -
%0 Journal Article %A A. V. Kim %A V. G. Pimenov %T Application of $i$-smooth analysis to construction of numerical methods for solving functional-differential equations %J Trudy Instituta matematiki i mehaniki %D 1998 %P 119-142 %V 5 %U http://geodesic.mathdoc.fr/item/TIMM_1998_5_a10/ %G ru %F TIMM_1998_5_a10
A. V. Kim; V. G. Pimenov. Application of $i$-smooth analysis to construction of numerical methods for solving functional-differential equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 119-142. http://geodesic.mathdoc.fr/item/TIMM_1998_5_a10/