Application of $i$-smooth analysis to construction of numerical methods for solving functional-differential equations
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 119-142
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

New approach to constructing methods of Runge–Kutta type as well as multistep methods for solving functional-differential equations is proposed. Our methods (direct analogs of numerical methods for solving ordinary differential equations) are based on separation of finite-dimensional and infinite-dimensional (functional) components in the structure of the phase state. Determination of the approximation order of the methods essentially uses notions of $i$-smooth analysis.
@article{TIMM_1998_5_a10,
     author = {A. V. Kim and V. G. Pimenov},
     title = {Application of $i$-smooth analysis to construction of numerical methods for solving functional-differential equations},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {119--142},
     year = {1998},
     volume = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_1998_5_a10/}
}
TY  - JOUR
AU  - A. V. Kim
AU  - V. G. Pimenov
TI  - Application of $i$-smooth analysis to construction of numerical methods for solving functional-differential equations
JO  - Trudy Instituta matematiki i mehaniki
PY  - 1998
SP  - 119
EP  - 142
VL  - 5
UR  - http://geodesic.mathdoc.fr/item/TIMM_1998_5_a10/
LA  - ru
ID  - TIMM_1998_5_a10
ER  - 
%0 Journal Article
%A A. V. Kim
%A V. G. Pimenov
%T Application of $i$-smooth analysis to construction of numerical methods for solving functional-differential equations
%J Trudy Instituta matematiki i mehaniki
%D 1998
%P 119-142
%V 5
%U http://geodesic.mathdoc.fr/item/TIMM_1998_5_a10/
%G ru
%F TIMM_1998_5_a10
A. V. Kim; V. G. Pimenov. Application of $i$-smooth analysis to construction of numerical methods for solving functional-differential equations. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 5 (1998), pp. 119-142. http://geodesic.mathdoc.fr/item/TIMM_1998_5_a10/