The $\varepsilon$-observability property for distributed-parameter systems
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 122-137

Voir la notice de l'article provenant de la source Math-Net.Ru

We analyse observability problem for distributed-parameter systems within the framework of “the guaranteed estimation theory”. Here the observability properties of system are defined through the characteristics of an informational domain that is consistent with the measurement data. The new property "$\varepsilon$-observability of system" at specified instant of time is detected. The obtained results are interpreted in terms of controllability problem for the dual system.
@article{TIMM_1992_1_a9,
     author = {A. B. Kurzhanskii and I. F. Sivergina},
     title = {The $\varepsilon$-observability property for distributed-parameter systems},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {122--137},
     publisher = {mathdoc},
     volume = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_1992_1_a9/}
}
TY  - JOUR
AU  - A. B. Kurzhanskii
AU  - I. F. Sivergina
TI  - The $\varepsilon$-observability property for distributed-parameter systems
JO  - Trudy Instituta matematiki i mehaniki
PY  - 1992
SP  - 122
EP  - 137
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_1992_1_a9/
LA  - ru
ID  - TIMM_1992_1_a9
ER  - 
%0 Journal Article
%A A. B. Kurzhanskii
%A I. F. Sivergina
%T The $\varepsilon$-observability property for distributed-parameter systems
%J Trudy Instituta matematiki i mehaniki
%D 1992
%P 122-137
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_1992_1_a9/
%G ru
%F TIMM_1992_1_a9
A. B. Kurzhanskii; I. F. Sivergina. The $\varepsilon$-observability property for distributed-parameter systems. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 122-137. http://geodesic.mathdoc.fr/item/TIMM_1992_1_a9/