Sufficient conditions of the metric function of differentiability
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 84-89
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We give the characterization of Banach spaces in wich for every nonempty closed set $M$ a metric function (=distance function to $M$) is Frechet differentiable at points of uniqueness and weakly approximative compactness.
			
            
            
            
          
        
      @article{TIMM_1992_1_a5,
     author = {V. S. Balaganskii},
     title = {Sufficient conditions of the metric function of differentiability},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {84--89},
     publisher = {mathdoc},
     volume = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_1992_1_a5/}
}
                      
                      
                    V. S. Balaganskii. Sufficient conditions of the metric function of differentiability. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 84-89. http://geodesic.mathdoc.fr/item/TIMM_1992_1_a5/