Sufficient conditions of the metric function of differentiability
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 84-89
Voir la notice du chapitre de livre
We give the characterization of Banach spaces in wich for every nonempty closed set $M$ a metric function (=distance function to $M$) is Frechet differentiable at points of uniqueness and weakly approximative compactness.
@article{TIMM_1992_1_a5,
author = {V. S. Balaganskii},
title = {Sufficient conditions of the metric function of differentiability},
journal = {Trudy Instituta matematiki i mehaniki},
pages = {84--89},
year = {1992},
volume = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TIMM_1992_1_a5/}
}
V. S. Balaganskii. Sufficient conditions of the metric function of differentiability. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 84-89. http://geodesic.mathdoc.fr/item/TIMM_1992_1_a5/