Sufficient conditions of the metric function of differentiability
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 84-89

Voir la notice de l'article provenant de la source Math-Net.Ru

We give the characterization of Banach spaces in wich for every nonempty closed set $M$ a metric function (=distance function to $M$) is Frechet differentiable at points of uniqueness and weakly approximative compactness.
@article{TIMM_1992_1_a5,
     author = {V. S. Balaganskii},
     title = {Sufficient conditions of the metric function of differentiability},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {84--89},
     publisher = {mathdoc},
     volume = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_1992_1_a5/}
}
TY  - JOUR
AU  - V. S. Balaganskii
TI  - Sufficient conditions of the metric function of differentiability
JO  - Trudy Instituta matematiki i mehaniki
PY  - 1992
SP  - 84
EP  - 89
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_1992_1_a5/
LA  - ru
ID  - TIMM_1992_1_a5
ER  - 
%0 Journal Article
%A V. S. Balaganskii
%T Sufficient conditions of the metric function of differentiability
%J Trudy Instituta matematiki i mehaniki
%D 1992
%P 84-89
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_1992_1_a5/
%G ru
%F TIMM_1992_1_a5
V. S. Balaganskii. Sufficient conditions of the metric function of differentiability. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 84-89. http://geodesic.mathdoc.fr/item/TIMM_1992_1_a5/