On extremal properties of the nonnegative trigonometric polynomials
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 50-70

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $C^+_n(a)$, ($a\geq 0$, $n\geq 1$) be the set of nonnegative trigonometric polynomials $f(t)=\sum^n_{k=0}a_k\cos kt$ with $a_0=1$, $a_1=a$, $a_k\geq 0(k=2,\dots,n)$ The function $$ u_n(a)=\inf\biggl\{f(0)=\sum^n_{k=0}a_k:f\in C^+_n(a)\biggr\} $$ on the segment $[0,A(n)]$, $A(n)=2\cos\frac{\pi}{n+2}$, has been studied. Values of the $u_n(a)$ for the close to $A(n)$ arguments a have been obtained. The results given in the present article have been applied to the problem of Ch.-J. Vallé Poussin and E. Landau that cropped up in the course of their investigation on the prime number theory.
@article{TIMM_1992_1_a3,
     author = {V. V. Arestov},
     title = {On extremal properties of the nonnegative trigonometric polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {50--70},
     publisher = {mathdoc},
     volume = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_1992_1_a3/}
}
TY  - JOUR
AU  - V. V. Arestov
TI  - On extremal properties of the nonnegative trigonometric polynomials
JO  - Trudy Instituta matematiki i mehaniki
PY  - 1992
SP  - 50
EP  - 70
VL  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TIMM_1992_1_a3/
LA  - ru
ID  - TIMM_1992_1_a3
ER  - 
%0 Journal Article
%A V. V. Arestov
%T On extremal properties of the nonnegative trigonometric polynomials
%J Trudy Instituta matematiki i mehaniki
%D 1992
%P 50-70
%V 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TIMM_1992_1_a3/
%G ru
%F TIMM_1992_1_a3
V. V. Arestov. On extremal properties of the nonnegative trigonometric polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 50-70. http://geodesic.mathdoc.fr/item/TIMM_1992_1_a3/