On extremal properties of the nonnegative trigonometric polynomials
    
    
  
  
  
      
      
      
        
Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 50-70
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $C^+_n(a)$, ($a\geq 0$, $n\geq 1$) be the set of nonnegative trigonometric polynomials $f(t)=\sum^n_{k=0}a_k\cos kt$ with $a_0=1$, $a_1=a$, $a_k\geq 0(k=2,\dots,n)$ The function 
$$ 
u_n(a)=\inf\biggl\{f(0)=\sum^n_{k=0}a_k:f\in C^+_n(a)\biggr\} 
$$ 
on the segment $[0,A(n)]$, $A(n)=2\cos\frac{\pi}{n+2}$, has been studied. Values of the $u_n(a)$ for the close to $A(n)$ arguments a have been obtained. The results given in the present article have been applied to the problem of Ch.-J. Vallé Poussin and E. Landau that cropped up in the course of their investigation on the prime number theory.
			
            
            
            
          
        
      @article{TIMM_1992_1_a3,
     author = {V. V. Arestov},
     title = {On extremal properties of the nonnegative trigonometric polynomials},
     journal = {Trudy Instituta matematiki i mehaniki},
     pages = {50--70},
     publisher = {mathdoc},
     volume = {1},
     year = {1992},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TIMM_1992_1_a3/}
}
                      
                      
                    V. V. Arestov. On extremal properties of the nonnegative trigonometric polynomials. Trudy Instituta matematiki i mehaniki, Trudy Instituta Matematiki i Mekhaniki UrO RAN, Tome 1 (1992), pp. 50-70. http://geodesic.mathdoc.fr/item/TIMM_1992_1_a3/